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Observed historical climate fields are characterized by comparatively precise data
and good coverage in the last few decades, and by poor observational coverage
prior to then. The technique of the reduced space optimal analysis of such fields
(i.e. estimating them in projections onto a low-dimensional space spanned by the
leading patterns of the signal variability) is presented in the context of more tradi-
tional approaches to data analysis. Advantages of the method are illustrated on
examples of reconstructions of near-global monthly fields of sea surface tempera-
ture and sea level pressure from the 1850s to the present, along with verified error
bars. The limitations of the technique as regards quality and robustness of esti-
mating a priori parameters, representation of long-term and small-scale types of
variability, assumption of stationarity of means and covariances, and incom-
pleteness of coverage are discussed, and possible ways to overcome these
problems are suggested.

Less than two centuries of observational records which have made their way from
the hand-written ship logs into the modern data banks constitute the main source
of our knowledge of the variability associated with the ocean-atmosphere inter-
action. For use in climate research, the ship measurements are customarily being
compiled into monthly binned averages on regular longitude-latitude grids with
quality control and other statistics (e.g. Comprehensive Ocean-Atmosphere Data
Set (COADS) - Woodruff et al., 1987; Global Ocean Surface Temperature Atlas
(GOSTA) - Bottomley et al., 1990). The resulting products still reflect the histori-
cal variations in the intensity of marine traffic, being incomplete at present, quite
‘gappy’ before the 1950s, and extremely sparse for the most of the 19th century.
Satellite observations can complete the modern part of this record (almost two
decades for sea surface temperature (SST), and much less for other climate vari-
ables), but cannot provide a record lengthy enough for the studies of decadal and
longer time scale climate variability. As a result, in climate studies, one faces the
necessity of using very incomplete data fields which are affected by observational
and sampling errors. In contrast, the two main approaches to modern climate
research, namely statistical techniques (like principal components analysis, singu-
lar vector decomposition, singular spectrum analysis, etc.) and model
experiments (use of observed fields for boundary conditions), both expect gapless
and error-free input data. Because of this, a great deal of attention has been paid
in the last few decades to various methods of data analysis, and to those which
are supposed to interpolate gaps and suppress data error. 

A majority of existing approaches to interpolating historical data are drawn
from the idea of minimization of least squares. It is well-known (by Gauss-
Markov theorem; e.g. Mardia et al., 1979; Rao, 1973) that the systematic use of
this method makes it possible to produce an optimal estimate (an unbiased one
with the smallest error among all linear estimates). However, this involves a few
assumptions, including the knowledge of error covariances. In the absence of
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this knowledge, some additional assumptions are usually made. Statistical
techniques such as kriging (e.g. Cressie, 1991) or successive corrections (Daley,
1993) normally assume a ‘localized’ covariance structure and produce useful
results if the gap size does not exceed the data decorrelation scale (e.g. Da Silva et
al., 1994; Levitus and Boyer, 1994). 

A seemingly different approach to historical data analysis (often also called
data reconstruction, to emphasize the scarcity of the input data), which is based
on the use of empirical orthogonal functions (EOFs), has become quite popular in
recent years (Shriver and O’Brien, 1995; Smith et al., 1996; Rayner et al., 1996;
Mann et al., 1998). In fact, this technique can be derived as a straightforward
application of a classic least squares estimate with a special EOF-based reduced
rank approximation of a signal (or model error) covariance matrix. In this venue,
Kaplan et al. (1997) formulated reduced space analogues of the traditional tech-
nique of optimal analysis (optimal interpolation, Kalman filter, optimal
smoother). The application of this technique to the historical data sets of SST and
marine sea level pressure (SLP) resulted in near-global monthly analyses of these
variables going back to more than 140 years, accompanied by the error bars
(Kaplan et al. (1998, 2000)) which are publicly available. The assumptions under-
lying the method, namely the stationarity of the mean field and covariance of the
signal, have been recently criticized (Hurrell and Trenberth, 1999). Additionally,
the current settings of the analysis result in globally incomplete fields of compar-
atively sparse resolution (4° × 5° grid size) which limits considerably the utility of
such analyses in climate model experiments. In section 2, we bring the reduced
space optimal analysis into the context of more traditional objective data analy-
ses and summarize its advantages and existing applications. Section 3 discusses
the current difficulties in applications of the method and suggests ways of resolv-
ing them. Section 4 concludes the paper by emphasizing the prospects of the
method and directions for further applications. 

The generic problem of the optimal analysis of time-evolving fields Tn (n is the
time index) requires reconciliation of information coming from two sources: an
imperfect model of time transitions An and incomplete and erratic observations
To

n connected to the estimated field via a linear (or linearized) operator Hn same
as Figure 1. Note that error of linearization (or interpolation) of the operator Hn
is included in the effective observational error eobs.

This problem is central for two areas of climate research which traditionally
are considered separately: assimilation of data into numerical models and objec-
tive analyses (reconstructions) of data sets of historical observations. In fact, the
main difference between these two types of problems is the relative amount of
information brought by the model versus observations: it is high in the former
problem and low in the latter. If model and observational errors in the equations
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Figure 1—Generic scheme of the
informational content for the

analysis of time-evolving fields. 



shown in Figure 1 are white in time, uncorrelated with each other and the esti-
mated fields Tn, have zero mean and known spatial covariances Qn and Rn
respectively, we have a classic Gauss-Markov estimation problem for Tn, whose
solution can be found as a minimizer of the quadratic cost function:

(1)

(for a detailed explanation of notation, terminology and basic facts of
optimal estimation, readers are referred to Kaplan et al., 1997). According to the
Gauss-Markov theorem (e.g. Mardia et al., 1979; Rao, 1973), this solution has
minimum error variance among all linear estimates of T, and it is usually referred
to as the ‘optimal’ solution. In fact, if additional assumptions on the Gaussian
distribution of errors or the signal are made, the same solution receives an inter-
pretation as the maximum likelihood estimate, or becomes the best solution
among all, even nonlinear, estimates for a wide class of optimality criteria.
Because the solution minimizes a quadratic cost function, it is often referred to as
a ‘least-squares solution’. 

There are well-known algorithms to find a minimizer of (1) in its complete
form (fixed-interval optimal smoother (OS)), or somewhat truncated forms (fixed-
lag optimal smoother, Kalman filter (KF)), or its simplification for a single-time
estimation (optimal interpolation (OI)). They are supposed to give optimal solu-
tions if assumptions on errors are satisfied, including the requirement that the
covariance matrices of errors (Q and R) are known. However, in actual applications
to the problems of climate research, the realistic dimensions of data are usually
large enough to warrant two outcomes: 

(1) error covariance matrices are not known in all their details since there are not
enough data to resolve them completely, so some crude parameterizations are
used instead;

(2) if no simplifications are carried out, optimal data analysis procedures are very
expensive (OI), extremely expensive (KF), or prohibitively expensive (fixed-inter-
val OS). 

Both these difficulties, however, can be dealt with at once if certain features
of optimal solutions of realistic climate fields are taken into account. 

Consider as an example a standard OI problem whose solution is a mini-
mizer T of the cost function:

(2)

Here To is a (column-) vector of observations, Tb is a first guess (background)
solution, H is a transfer matrix from a complete field to the set of observed points,
R and C are covariances of observational and first guess errors, respectively. The
two terms of the cost function S ‘punish’ the solution T for deviation from obser-
vations and from the background values. 

The solution to this OI problem is:

where 

is estimated covariance of its error. 
Let us subtract the first guess solution from the estimated field, so that the new T is

T – Tb and new To is To – HTb. If the first guess solution is a climatological field, then we
have redefined the signal to be a field of anomalies. After such a change in definitions,
the first guess solution equals zero, so that the first guess error equals the entire value of
the signal T, and the matrix C becomes the covariance of the signal 〈TTΤ〉. It can be
expanded into its canonical representation:

C = E Λ ET (3)
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E being a matrix of eigenvectors (EOFs if C is effectively a sample covariance
estimate), and Λ is a diagonal matrix of eigenvalues. We can use eigenvector
patterns to rotate an estimated field:

T = Eα (4)
so that α = ETT becomes a new unknown: a vector of projections of a target

field on eigenvectors. 
For simplicity, let us consider the case of a completely observed system (H=I,

I being an identity matrix) with white uniform error (R=rI). The OI solution for
such a system has a closed form for each component of α: 

(5)

(i=1…N is an index of components, eigenvalues and eigenvectors, αo = ETTo

is a vector of projections of the observed field To on eigenvectors). We assume that
eigenvalues are arranged in descending order. The usual case then is that
λN << r << λl. This means that α1≈α0

1 and αN ≈ 0.
In other words, the standard least squares procedure of OI in its search for

the optimal solution will damp the observed values of all eigenvector amplitudes
whose energy in the signal does not dominate over the observational error.
Eigenvector modes which are expected to have energy much below the level of
observational error will not be represented in the OI solution. In the case of global
SST anomaly fields, a realistic observational error level of 0.5°C (see Kaplan et al.,
1998 for details on the data set and its error model) results in the reduction by the
factor of 2 or more of the variance in the modes beyond top 100 (Figure 2). 

Consequently, computing the OI solution in all its details (projection to all
EOFs) is superfluous: equally good results can be achieved by computing only
projections on some set of leading eigenvectors. It should be noted that for many
physical variables, the most energetic modes are those of the largest spatial scale.
Details of the solution on small scales (projection to high number eigenvectors) is
controlled by the fine details of the covariance matrix C which usually cannot be
reliably estimated from the data. Large scale patterns of C (leading eigenvectors),
however, can be estimated in a more reliable way. Approximation of C in (3) by
only a few leading terms (truncation) results in infinite coefficients in the second
term of the cost function (2) which totally disallow projection of the solution on
truncated modes (in terms of the solution (5), if λi is assumed to be zero, then αi
will also be zero). The same result, of course, can be achieved by truncating the
eigenvector representation of the solution (4) to begin with. We call such a 
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truncation a reduced space representation of the solution; inserting the truncated
form of (4) into cost functions followed by their minimization with regards to the
low-dimensional vector allowed the development of the reduced space analogues
of the OI, KF, and OS algorithms (Cane et al., 1996; Kaplan et al., 1997). If certain
assumptions are held, these solutions are in fact projections of the ‘complete’ full-
grid optimal solutions onto the low-dimensional reduced space. 

Figure 3 emphasizes the contrast between the reduced space solutions and
those obtained via the more traditional kriging (or successive corrections)
approach. Both types of solutions are based on the least-squares, the difference
being in the approximation used for the baseline error covariance. The reduced
space approach uses the most effective type of low-rank covariance approxima-
tion: via its leading eigenvectors in its canonical expansion (Golub and Van Loan,
1996). For most climatic fields, this approximation will retain the part of the
covariance with the longest spatial (and often temporal) scales, i.e. it corresponds
to that part of the signal which we usually presume to be ‘climatic’. The residual
of this representation will have predominantly short decorrelation scales and in
fact will not be an effective representation of the true climatic covariance in any
matrix norm. Yet it is being used in the standard applications of kriging and
successive correction techniques for the sole reason that such ‘localized’ covari-
ance structures are easy to model statistically. 

While the reduced space solutions are formally suboptimal among full grid
solutions, they are optimal among all reduced space solutions, being also far
cheaper and much easier to feed by a priori error covariance information. For the
settings which allow direct comparison, the solutions in the reduced space prove
to be not inferior to the actually existing full grid solutions (Cane et al., 1996). The
reason for that is the poor representation (or inadequate parameterization) of
small scales in full grid error covariance estimates. As a result, the full grid data
analysis of small scales sometimes does more harm than good. Moreover, the
analysis for those scales represents the major computational expense of the entire
procedure. Hence, the savings of reduced space analysis occur at the scales which
are not really constrained by the data. Estimation on such scales is often mean-
ingless, but the traditional schemes cannot selectively cut off computation there.
The tunable nature of the dimension of a reduced space makes it possible to put
into the solution all scales down to the smallest resolved by available data, and
the choice of leading EOFs for a basis that guarantees to some extent the minimal
dimension of the analysis space. 

When the covariance of a climatic variable is dominated by a few large-scale
modes, the generic objective analysis with correctly estimated covariance struc-
tures will predominantly reconstruct the patterns manifested in the large-scale
climate dynamics. This is true for both full-grid and reduced space analyses, the
latter being particularly effective in such settings. When this is not the case, the
results of covariance estimation and of the full-grid objective analysis applied to
the sparsely observed data are likely to be less robust and more error-prone, with
space reduction not being effective either. 
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We applied the reduced space OS to produce the near-global analysis of 5° × 5° SST
monthly anomaly grids for the 1856-1991 period (Kaplan et al., 1998). For a
model of time transitions we used an empirically fitted first order autoregressive
model which was assumed to be diagonal in the reduced space coordinates. The
observational data used in this work are known as the MOHSST5 compilation of
ship observations produced by the UK Met Office (Bottomley et al., 1990), Parker
et al., 1994). Covariance of the SST field was derived from the 1951-1991 period,
then its leading 80 EOFs were used for the optimal estimation in the entire time
range from 1856 to 1991. 

Extensive tests proved the analysis to be robust and self-consistent. As
Figure 4 illustrates, even under the sparse spatial coverage of December 1877
(known to be a strong warm ENSO event), the analysis produces a believable struc-
ture for a very strong El Niño known to have occured that year (panels (a), and
(b)). We verified the credibility of that reconstruction by taking data for December
1986 (a well sampled month, panels (c) and (d)), sampled them per the 1877
sampling pattern, and corrupted them by noise (to reflect the increase in the error
at each grid box due to less frequent sampling). The OS analysis produced the
1986 El Niño pattern with only slightly weaker amplitude than that obtained with

2.2
APPLICATIONS 
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Figure 4—Available SST
observations and their reduced

space OS analysis for December
1877 (panels (a) and (b)) with

verification through the
experiment with 1986 data:

simulated OS analysis for
December 1986 using the data
distribution of 1877 (panels (e)
and (f)) versus the standard OS

analysis for December 1986 with
all available data (panels (c) and

(d)). Also shown are large-scale
errors in the two reconstructions

(panels (e) and (f)) and the
NCEP OI December 1986 field
presented in (i) 5° × 5° and (j)

1° × 1° resolution. Units are °C. 

(a) Observations: Dec. 1877 (b) Analysis: Dec. 1877

(c) Observations: Dec. 1986

(e) Observations: Dec. 1986 resampled as in Dec. 1877

(g) Estimated large scale error for 1877

(i) NCEP OI, 5° × 5°; Dec. 1986 (j) NCEP OI, 1° × 1°; Dec. 1986

(h) Estimated large scale error for 1886

(f) Analysis of Dec. 1986 for obs. resampled as in Dec. 1877

(b) Analysis: Dec. 1986



the full data (panels (e) and (f)). As expected, the magnitude of the large-scale 
estimated error is much larger for the reconstruction from the December 1986
reduced quality simulation, than for the reconstruction from the complete data
(panels (g) and (h)). Further tests show that our reconstructions are very similar to
the Reynolds and Smith (1994) NCEP OI estimates of December 1986 SST
anomaly (the NCEP OI combines in situ and AVHRR satellite data), though the
latter is richer in small-scale details, particularly when presented in its full 1° × 1°
resolution (panels (i) and (j)). 

To test the analysis for a period not used in estimating the covariance struc-
tures, we carried out additional experiments as follows: the Reynolds and Smith
(1994) NCEP OI SST anomaly fields for 1992-1996 were chosen as the ‘true’ solu-
tion. These ‘true’ data were resampled and corrupted by noise according to the
data availability and our estimates of observational error for the 1916-1920 period
(Figure 5). The average rms error for available observations is 0.74°C, and there are
many locations where the SST is not observed at all (panel (a)). The analysis of the
simulated data differs from the NCEP OI fields by 0.48°C on average (panel (b)).
However, the major part of this difference is in the error of truncation: the vari-
ance of NCEP OI fields which cannot be represented by the 80 EOFs used in our
reconstruction (cf. Figure 6f from Kaplan et al., 1998). Projecting the NCEP OI
fields on the linear subspace defined by the 80 EOFs from our analysis provides
the ‘reduced space version’ of the true SST field (and incidentally allows for a
statistically homogeneous extension of reduced space historical analyses by
higher quality modern period data sets: extension of our OS by the reduced space
projection of the NCEP OI is now publicly accessible, see Acknowledgments). Our
simulated analysis differs on average by 0.31°C from this reduced space version of
truth (panel (c)), which is in good agreement with the average theoretical error
estimate, 0.28°C (panel (d)). The years 1992-1996 are outside the period used in
constructing the covariance estimate and are marked by strikingly different
behaviour. Thus, these experiments demonstrate that even with limited data, the
reduced space OS is able to reconstruct the global SST in a period when the covari-
ance structure is somewhat different from the one used by the analysis procedure. 

We also applied the reduced space OI analysis to the SLP data of
Comprehensive Ocean-Atmosphere Data Set (COADS, Release 1 extended by stan-
dard Release 1a; Woodruff et al., 1987, 1993) to produce 4° × 4° fields of SLP
monthly anomaly for the 1854-1992 period (Kaplan et al., 2000). Note that both
our SST and SLP analyses utilize only ship observations presented in the form of
monthly ‘superobservations’ (Smith et al., 1996) - mean values for 5° × 5°

SECTION 5 — ANALYSIS OF CLIMATE VARIABILITY AND CHANGE

205

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

30E 60E 90E 120E 150E 180W 150W 120W 90W 60W 30W 0
X

90
S

60
S

30
S

0
30

N
60

N
90

N
Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

30E 60E 90E 120E 150E 180W 150W 120W 90W 60W 30W 0
X

90
S

60
S

30
S

0
30

N
60

N
90

N
Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

30E 60E 90E 120E 150E 180W 150W 120W 90W 60W 30W 0
Longitude

90
S

60
S

30
S

0
30

N
60

N
90

N
La

tit
ud

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

30E 60E 90E 120E 150E 180W 150W 120W 90W 60W 30W 0
X

90
S

60
S

30
S

0
30

N
60

N
90

N
YFigure 5—Statistics of the

experiment with the NCEP OI
data for the 1992-1996 period

resampled according to the 1916-
1920 observational coverage. See

text for explanation.

(a) Observational error (b) OS-NCEP OI

(c) OS-RS (-NCEPOI) (d) Theoretical error



(MOHSST5) or 2° × 2° (COADS) bins. The UK Met Office applies so-called
‘winsorization’ (Bottomley et al., 1990) to the content of their bins which makes
the bin average more similar to a median. The COADS maintains a variety of
statistical characteristics of the bin contents in its ‘monthly summaries’: in addi-
tion to the mean, it provides a number of observations, their standard deviation,
median, sextiles, etc. Pre-war SST data of the UK Met Office has Folland and Parker
(1995) ‘bucket corrections’ applied to it. 

Figure 6 shows the monthly values of the analysed NINO3 (mean SST for the
eastern equatorial Pacific 5°S-5°N, 150°-90°W), a familiar El Niño - Southern
Oscillation index, with 3σ error bars supplied by the analysis. Obviously, the
analysis eliminates a great deal of noise present in direct NINO3 estimates from
the observed data, and agrees well with the Quinn (1992) list of El Niño events
which is based on a variety of land-based, historical factors known to be associ-
ated with El Niño. The summary comparison of annual mean NINO3 with
Quinn’s data is shown in Figure 7. The relation is strong but not perfect: six El
Niño events, rated as ‘moderate’ or weaker by Quinn have in fact negative (as
large as –1°C for 1874) annual NINO3 from our analysis. The latest of them
happened in 1943, others occurred in the 19th century. However, the analysis of
the Southern Oscillation (SO) and associated coastal phenomena for the period
1926-1986 by Deser and Wallace (1987) suggests that the coastal SST index might
show a stronger connection to Quinn’s index of El Niño events. For this purpose
we created a coastal SST index by averaging the results of the OS analysis over the
NE triangular half of the [15°S-0°N, 90°-75°W] square (the diagonal included).
Indeed, the comparison presented in Figure 7 qualitatively supports this sugges-
tion: only 2 of the events (1871 and 1907) have a negative coastal SST value. The
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ability of the analysis to distinguish between geographically close but function-
ally different area averages (like NINO3 and the coastal average) is encouraging,
because the small-scale differences between close areas could be lost in the
sampling and observational noise which our technique is filtering out in the
attempt to reconstruct the large-scale dominant structures. 

Kaplan et al. (2000) present the comparison of SLP time series measured at a
few island or coastal stations (Darwin, Tahiti, Reykjavik, and Gibraltar) affected by
large-scale atmospheric phenomena (SO and North Atlantic Oscillations) with
their ‘marine-based proxies’ - averages of analysed COADS SLP over a few analy-
sis grids surrounding a station. The proxies compared favourably with the
land-based measurements, despite being produced from the greatly inferior
quality ship report data. A significant portion of this success should be attributed
to the fact that the major part of the SLP signal on the stations we considered
comes from the large-scale atmospheric oscillations which are being predomi-
nantly reconstructed by the global analysis of marine data. 

Figure 8 compares correlation coefficients between Darwin and Tahiti station
data (Konnen et al., 1998; Ropelewski and Jones, 1987) with the same for these
stations’ marine-based proxies (Kaplan et al., 2000). Both coefficients are
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computed in different width time windows and presented as functions of time.
The correlation coefficients are close for the modern period, but the land station
values are lower during earlier periods. We suggest that the correlation between
the land-based data weakens for the early part of the record owing to degraded
data quality. Factors like instrument defects and replacements, changes in obser-
vational times and location can create systematic problems in early fragments of
station records; some of these problems for Darwin and Tahiti records are docu-
mented, and corrections are customarily applied (Ropelewski and Jones, 1987;
Allan et al., 1991). It is most likely, however, that there are uncorrected biases still
left in these records, particularly in the one for Tahiti (Kaplan et al., 2000). 

On the other hand, the sparser and more erratic marine data force the analy-
sis to reproduce less smaller scale (and thus more error-prone) phenomena, and to
leave mostly the large-scale SO-associated pressure changes in the reconstruction.
That strengthens the correlation between the analysis proxies for Darwin and
Tahiti which are located near antinodes of the SO. Note that this correlation
increase occurs as the response of the analysis procedure to a systematic decrease
in the quality of marine data, despite the underlying assumption of constant
covariance for an estimated field. 

In fact, correlation between Darwin and Tahiti SLP records has traditionally
been interpreted (Trenberth, 1984) as an indicator of the signal-to-noise ratio
when these station records are used as the indices of the SO (in this case the
‘signal’ is the SO, everything else is the ‘noise’). Note that most of the weakening
episodes in six-year window correlations exhibited by the land stations in the
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early part of the record are mimicked by the marine proxy correlations. Those
episodes are most likely the realistic changes in the strength of SO relative to the
background atmospheric noise. Those which are present only in the land records
might be either spurious or missed in the marine records because of the sparsity
of COADS coverage, at those particular times. The level of certainty of the latter
possibility may change significantly when the SLP from the ‘Dutch’ deck, a major
COADS component prior to the Second World War, is included in the monthly
summaries in further COADS releases (Woodruff et al., 1998). Even at the present
level of coverage, the indices based on ship observations may provide a cleaner
indication of the large-scale phenomena than the local land-based records. 

The advantages of the reduced space optimal analysis do not come for free: they
are based on our knowledge of a priori estimates, namely covariances of observa-
tional error R and of the first two statistical moments of the solution: its mean
field Tm and its covariance C. All these necessary values can be computed only
approximately from the observations. 

In computing R (which allows the analysis to distinguish between poor and
high quality superobservations), we use intrabox variability and a number of
observations for the superobservational bins. When we analyse the UK Met Office
SST data, we have to estimate their intrabox standard deviations from the COADS
monthly summaries because the UK Met Office does not maintain any intrabox
statistics but winsorized means in its official data format. Our estimates of obser-
vational error are far from perfect. Figure 9 shows the map of our estimated single
ship observational error (values used in the analysis by Kaplan et al., 1998). These
errors are standard deviations of individual measurements taken during one
month within a given 5° × 5° box. Such deviations account for both instrumental
and sampling error (for a single measurement the latter is equal to the natural
variability of SST in the given space-time box). Note that these deviations from
mean values are computed for monthly bins, so they do not reflect month-to-
month or longer climate variability. These values can be easily computed for
larger bins, if mean and standard deviation statistics are available for their parts
(Kaplan et al., 2000, p. 2989). 

Comparison of Figure 9 with the map of random error estimates by Kent et
al., 1999 (their Figure 3d) brings uneven conclusions. The latter map does not
include any kind of sampling error. This explains the much larger values of Figure
9 in the regions of Gulf Stream and Kuroshio Current. However, outside these
areas, the map of Figure 9 should also give larger values. This does not seem to be
the case everywhere: insufficient density of observations does not allow for an
adequate sampling of the SST natural variability in many areas of the world ocean.
For the SLP, the contribution of sampling variability into our estimates of a single
ship error (not shown) is so large, that our COADS-based estimates (used by
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Kaplan et al., 2000) exceed those of Kent et al., 1999 (their Figure 3b) by the factor
of 3 in the mid-latitudes and marginally in the tropics. 

Clearly, a lot more work should be carried out in this direction until really
reliable observational error estimates enter gridded analyses of climate variables.
An important step in this direction would be to bring to the attention of all data
centres the necessity to include the statistics of intrabox distributions in their
standard data formats, rather than just providing box mean values. This seems to
be particularly crucial in the planned blending project of the COADS and UKMO
data banks (Woodruff et al., 1998). The comparison of ship-based estimates, like
that of Figure 9, with those obtained from satellite data suggests that the ship-
based estimates are affected by the sampling error even for the periods of the best
coverage. Hence, the satellite data must be used to supplement the ship-based esti-
mates of the small-scale variability. 

The problems with the reliable estimation of Tm and C are even more fundamen-
tal. Ideally, these statistical characteristics of the signal are supposed to be
applicable to the entire period of the analysis. In fact, poor data quality and sparse
coverage in the early part of the record forces us to use only the modern data
period for the derivation of Tm and C. In the applications described above, we
used climatological means for the 1951-1980 period and estimated the covariance
for the period from 1950 to the beginning of the 1990s. An analysis is then made
using these values for as far back as the middle of the 19th century. 

It was observed by Hurrell and Trenberth (1999) that a linear trend for the 20th
century computed from our SST analysis shows somewhat less warming than
other estimates. They suggested that this is due to the ‘stationarity’ assumption:
the hypothesis that the modern-period mean and covariance are applicable for
the entire record. If, in fact, the long-term variability of SST (e.g. trend) resulted
in a much different mean SST state for the first half of the century, and the
pattern of this change is not well-represented by the modern-period covariance,
the analysis might underestimate this change. 

At present, we are addressing this issue through the analysis of data residu-
als, the difference between the observed data and our analysis. These residuals
presumably consist of two major components: observational and sampling error
and part of long-term variability unresolved by the analysis. Because of the very
different characteristics of these components, it should be relatively easy to isolate
the latter. Prospective methods of isolation include the application of the reduced
space OI and OS technique to the residuals and covariance reestimation (Kaplan
et al., 1997, 2000) and polynomial spline smoothing of the residuals (Wahba,
1990). Note that bestfitting a straight line or other slowly changing functions of
time to the residuals can be brought into the prospect of optimal estimation and
provide error bars for the trend estimates, because all other variability in the resid-
uals is expected to be temporally uncorrelated errors. The same approach does not
work for fitting slowly changing functions of time to the actual temperature
changes, as the latter contains a complete spectrum of temporally correlated vari-
ability, from secular to intermonthly. If those are not removed, one should not
assume the ‘whiteness’ (mutual statistical independence) of errors, for such an
assumption will result in unrealistically low theoretical estimates for the uncer-

Problems with the mean 

3.2
CHARACTERIZATION OF THE

SIGNAL

ADVANCES IN THE APPLICATIONS OF MARINE CLIMATOLOGY

210
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tainty of the fit. Figure 10 presents a drawing emphasizing the advantage of
removing the interannual climate variability from the observed data prior to esti-
mating long-term changes. 

Our preliminary analysis indeed shows some long-term variability left in the
residuals. Once we are done with its complete estimation, we will be able to esti-
mate the total long-term variability in the SST record and measure its uncertainty.
Then we will either separate it from the raw observations before applying the
analysis procedure, or make sure that it is properly represented in the covariance
structure. 

The assumption of covariance stationarity and the possibility of its negative
consequences comes up quite often in discussions, but has not, to the best of our
knowledge, been systematically researched. As a first attempt at this, we
compared covariance matrices estimated in different 40-year time windows for
our SST analysis. Since the current SST analysis was performed under a conserva-
tive assumption of stationary covariance, this comparison probably
underestimates the actual covariance variability. As a measure of distance between
two covariance matrices, we use the Frobenius norm: the square root of the sum
of squares of all elements in the matrix difference (Golub and Van Loan, 1996).
Even the norm of covariance matrix itself seems to change dramatically over

Problems with the covariance:
stationarity 
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time, with the minimum in 1930-1970, and the maximum in 1890-1920 (Figure
11, top). The diagram of normalized distances (norm of a difference divided by
the norm of the covariance matrix computed for the recent 40 years) suggests that
every period in the last 1.5 centuries was in some sense unique: the farther from
each other the middles of sample periods get, the larger the normalized distance
between matrices (Figure 11, bottom). During some periods (like the one centered
on 1930), this change happens very fast; in others (1910 and 1950) it occurs more
slowly. 

The successful validation of many aspects of our SST analysis so far shows
that the exhibited instability of the covariance matrix does not render the analy-
sis completely wrong or useless: the inherent robustness of the least squares
estimates can absorb some level of inadequacy of a priori estimates. Moreover, all
the different covariance matrices compared in Figure 11 were produced by the
analysis of Kaplan et al. (1998) under the assumption that the covariance of the
SST field is constant and equal to the sample covariance of 1951-1991. It seems
reasonable, however, to involve data from all time periods in the computation of
the covariance and to either use the estimate which would be applicable to the
entire analysis period, or to account for slow changes in time of the covariance
structure in our analysis methodology. 

The significant volatility of the covariance structure discourages the use of only
the modern period of particularly good (helped by satellite coverage) data for
covariance estimation. If we are determined to estimate the large-scale covariance
structures from a period of no shorter than a few decades, this imposes certain
restrictions on the spatial resolution with which covariance can be estimated.
Before analysing COADS SLP data we tried to estimate covariance for 2° × 2°
spatial bins, and found that the analysis domain had large holes (shown in black
in Figure 12) in the tropical Pacific. It took averaging to a 4° × 4° grid to ‘close’
these holes. As a result, the analysis domain we obtain has quite a coarse resolu-
tion and still is globally incomplete. This severely limits the usage of such
analyses in the climate model studies. It seems important to be able to generalize
the technique of the reduced space optimal estimation to the stage at which it can
produce high resolution and globally complete analyses. 

In fact, the reduced space reconstruction technique can be empowered by
the multivariate approach. The principal modification of the reduced space

Problems with the covariance:
resolution and coverage 
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optimal analysis that can produce high resolution globally-complete fields is to
separate an estimated field into a few terms which correspond to different scales
of resolution (and thus variability). Different terms can be observed through
different sources. For example, most of the ocean 5° × 5° resolution term is well
observed by ships during last 50 years, and 1° × 1° covariability within 5° × 5°
boxes, plus all variability in the Southern Ocean can be estimated from the NCEP
OI (Reynolds and Smith, 1994) for the last 15 years, etc. The set of all terms can
be subjected to multivariate EOF analysis, each piece being a separate variable in
this analysis. These multivariate EOFs are then used for the reconstruction of all
pieces together, and thus for the entire high resolution globally-complete field.
This approach has a certain ‘modular’ nature because it makes it possible to push
further in both directions: very large scale variability can be estimated for very
long periods from the paleodata, extending the analysis to very long periods, and
certain areas of high gradients and/or good observational networks can be
‘refined’ by adding special high resolution ‘patches’. 

A seemingly fruitful direction for producing high resolution objective analyses is
to literally combine analyses represented by the left-hand and right-hand parts of
Figure 3. Note that the exact solution for the full grid OI can be separated into
two parts: 

The first term Eα here is our standard reduced space OI solution. The second
part, C′HT (HC′HT + R)-1 ∆To, represents a correction to it towards the complete
(exact) solution. This correction is defined by the covariance piece C’ and
contributes predominantly to the small-scale variability. It is easy to check that ∆T
is a formal OI solution to the estimation problem:

where ∆To = To –HE α is an observational residual to the reduced space OI solu-
tion. We do not expect to be able to estimate C′ from the data without any special
assumptions. However, this part of covariance can be modelled statistically under
certain assumptions of spatial stationarity, e.g. as a function of spatial lag, in the
style of the traditional kriging or successive correction approach. Thus, these
traditional techniques can be successfully used for complementing the reduced
space solution with small-scale corrections. 

When an a priori estimate of the signal covariance is correct, the statistics of the
solution should be consistent with it, i.e. certain balance equations should be satis-
fied. If this is found not to be the case, a priori values can be reestimated to satisfy
the balance, and then the analysis solution can be recalculated. These steps can be
repeated iteratively until the solution satisfies the balance. However, the use of
different balance formulations might result in somewhat different solutions. 

Kaplan et al. (1997) introduced the balance in the form of the system of
equations:

which ties together covariances of the projection and reduced space OI solutions
(αpand αOI respectively), error covariance for the projection solution Pp, and the
reduced space representation of the covariance. The projection solution consists
of the best fit coefficients of EOF patterns to the observed data. Pp is the 
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theoretical covariance of the error in these coefficients. Originally they used the
one-parametric heuristic formula for ‘redistributing’ the spectrum of Λ. This
seemed to give satisfactory results for SST analyses, but failed when applied to the
SLP analysis by Kaplan et al. (2000). Because of that, the latter work reduced the
system to a single nonlinear matrix equation for Λ:

and presented an exact solution to it. The results of the analysis satisfied the
balance after the first iteration. 

An alternative way to state the analysis balance can be based on the expec-
tation maximization (EM) procedure (Schneider 2000 and references therein). In
the reduced space version, and taking into account the observational error, the
EM balance for the OI solution can be written as:

Our initial trials of this procedure for the SST analysis have shown conver-
gence after approximately 10 iterations. 

It should be noted that because of their reduced space nature, the procedures
described above cannot bring the estimates of the leading EOFs outside the
initially defined reduced space. However, if the small-scale correction is added
after every iteration, and the full-grid covariance is reestimated, that might result
in substantially better estimates of the signal covariance and perhaps overcome
the limitation of ‘gappy’ and erratic data from which it is derived. 

On the other hand, however complicated the technique we use, the covari-
ance is always estimated with some uncertainty. The explicit modelling of this
uncertainty, transferring it into the uncertainty of the analysed fields, perhaps in
the Bayesian framework, is an important task for the future. 

We have shown that the reduced space optimal estimation is a computationally
effective restructuring of the process of obtaining the full-grid optimal solution,
and that it delivered verifiable analyses of climatic fields in both systematic appli-
cations to date (for SST and SLP). 

The problems of the method are the same as those of any objective analysis
technique: difficulty in deriving reliable a priori estimates from the sparse and
erratic data. These problems might be solved, in part, if new significant volumes
of data for the early periods become available (Woodruff et al., 1999). It is very
important that all data centres involved provide extensive statistics of intrabin
distributions (as opposed to providing means only), for example, the current
COADS model of monthly summaries. The use of satellite data is another prospec-
tive way of improving a priori estimates of in situ error statistics. 

Land station data is another powerful information resource that can be
combined in the analyses with marine observations to the advantage of the
product (cf. recent SLP analysis of the UK Met Office by Basnett and Parker, 1997). 

Further improvement of the analysis technique should include the system-
atic a priori estimation of mean, covariance, or long-term variability and
changing covariance structure from the entire period of available data. Separation
of the estimated fields into large- and small-scale varying components allows for
the generalization of the technique which can produce high resolution globally-
complete products. 

The technique of reduced space optimal estimation should be more system-
atically applied to all climate variables for which historical (COADS) data sets are
available, e.g. meridional and zonal winds, marine air temperature, humidity, or
(non-COADS) precipitation, sea ice concentration, and possibly sea surface
height. It also opens interesting prospects for historical analyses of ocean-atmos-
phere fluxes with the possible modification of applying the analysis to the system
of a few physical variables (e.g. surface wind components and SLP) and using a
linearized physical model (e.g. geostrophic or frictional balance) as an additional
analysis constraint. 

4.
CONCLUSIONS AND

PROSPECTS
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