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ABSTRACT 

Of all climate-related disasters, floods account for the largest average annual losses. Only a 
limited climatic perspective on floods in the United States exists. This includes the identification 
of the seasonality and typical mechanisms (e.g., frontal or connective precipitation) important for 
floods by subregion. Climate change analyses have led to either no clear assessment of changes 
in flood potential, or to projections of dramatically increased frequency of extreme floods.  The 
anticipated intensification of the atmospheric hydrological cycle and the increased atmospheric 
moisture holding capacity under warming, render increasing flood risk plausible. However, it is 
unclear whether the climatic processes associated with extreme floods are well modeled in global 
and regional climate models, and whether such models provide predictability for assessing the 
frequency and intensity of rainfall responsible for extreme floods in the United States with 
spatial specificity relevant for hydrological analysis of floods.  

Our work shows that extreme floods (annual exceedance probability less than ~ 0.1) in most 
river basins in the United States are associated with a distinct atmospheric moisture transport 
pattern, where the moisture source is typically in the oceans rather than associated with local 
convection. Over much of the Western United States, we have been able to demonstrate 
statistical predictability of the annual maximum flood conditional on pre-season Pacific SSTs. 
For a region in Brazil we are able to demonstrate that the annual maximum flood at each of the 
stations can be modeled using concurrent large scale, seasonal climate predictors, and a spatial 
scaling model for the flood process indexed to the drainage area of the site. Consequently, our 
hypothesis is that river basins aggregate the spatio-temporal climate signal in terms of synoptic 
and seasonal atmospheric moisture transport in a way that allows empirical connections to be 
drawn between slowly varying climate fields and the severity, incidence and location of extreme 
floods over N. America. If these connections can be quantitatively assessed, modeled and 
understood, then a basis for assessing changes in flood risk using GCMs or empirical methods 
could be developed for seasonal prediction and for climate change projections. 

The research proposed here seeks to develop an exploratory statistical-dynamical approach for 
“downscaling” flood risk from climate models through an analysis of the causal structure of the 
entire ocean-atmosphere-land chain of the flood process. This entails (a) use of historical, re-
analysis and GCM data for the diagnostic analyses of the causal structure from the spatio-
temporal hydroclimatic data associated with the extreme floods in each of the regions of the 
United States; (b) Bayesian model development for assessing the conditional probability 
distributions across the causal chain, leading to a conditional flood risk estimate given either 
GCM state variables or observed/re-analysis data fields, and (c) assessments of projections of 
flood risk at selected locations for the upcoming season or for a climate change scenario.  
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RESULTS FROM PRIOR RESEARCH 
Kushnir: Recent work of Y. Kushnir directly relevant to this proposal is the analysis of 
observations and model output with regard to the mechanisms and predictability of droughts in 
the world sub-tropical, semi-arid regions. This work has been performed in collaboration with M. 
Cane, R. Seager, M. Ting, N. Naik, and J. Nakamura of the Lamont climate analysis and 
modeling group. The work performed under these awards examined different aspects of the 
character, causes and predictability of multiyear droughts in southwestern North America and the 
Mediterranean regions. Large ensembles of long model simulations with various configurations 
of forcing, as well as observations, were used to determine that the driver for persistent, multi-
year drought in southwestern North America is equally persistent La Niña-like conditions in the 
tropical Pacific Ocean. A secondary role is played by the Atlantic, mainly the north tropical 
Atlantic, which exerts weak but more slowly varying (interdecadal) influence. The atmospheric 
dynamics that link the tropical SSTs onsists of Rossby wave teleconnections and a more direct, 
zonally and hemispherically symmetric, eddy-mean flow interaction that forces eddy-driven 
descent in the mid-latitudes during La Niñas, which suppresses precipitation. The Atlantic 
influence appears to be via a direct Gill-like response in summer and an atmospheric bridge to 
the equatorial Pacific, which suppresses precipitation there and as a result, generates a weak 
stationary wave in the extratropical Pacific. These studies were funded mainly by grants from the 
NOAA Climate Program Office, the Climate Variability and Predictability element, specifically: 
‘Predictability of tropical Pacific Decadal Variability and North American drought’ (Seager, 
Kushnir, Cane and Naik: 6/1/2005 to 5/31/08) and ‘Abrupt Climate Change in a Warming World 
- Modeling and understanding late Holocene and near term future hydroclimate change’ 
(Schlosser, Broecker and others: 7/1/08 to 6/30/10). Additional funding was provided by NSF 
under: ‘Modeling the Tropical Atmosphere-Ocean System: Determining the Causes of Near 
Future Subtropical Drying (Seager, Kushnir, Cane, Ting, Naik: 7/1/08-6/30/11). 
 
Lall: Recent work relates to investigations of floods in the Western United States and Brazil, to 
the development of clustering tools for hurricanes and storm tracks, (all cited in the proposal)and 
to the development of Hierarchical Bayesian methods for modeling hydroclimatic data. Lall has 
a long history working on flood risk problems going back to his Phd work, and was the first to 
connect climate variability and floods in a systematic way in the 1990s (papers with S. Jain). He 
has pioneered the application of a variety of statistical methods for hydroclimatic data analysis.  
 
Robertson:  Recent work relates to investigations of monsoon dynamics, storm tracks and flood 
connections in India, and to hurricane track modeling/clustering, non-homogeneous hidden 
Markov Models for climate downscaling, nonlinear climate dynamics, and adjoint methods for 
the analysis of circulation patterns and moisture dynamics.  Related work on modeling “weather 
in climate” with connections to seasonal forecasting and climate change analyses. 
 

STATEMENT OF WORK 
1. Identification of the Problem 

Floods translate into higher average annual economic losses than any other natural disaster. 
Consequently, there is significant concern as to how the frequency and intensity of extreme 
floods may change with climate. Much of the past work on extreme floods falls into one of the 
following categories: 
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1. Rainfall-runoff modeling for near real time forecasts of individual flood events in a river 
basin, given a spatio-temporal distribution of precipitation and antecedent soil moisture.  

2. Characterization of the atmospheric circulation, local convection and synoptic 
meteorology of a specific flood event.  

3. Statistical flood frequency analysis using either streamflow data or rainfall data in 
conjunction with rainfall-runoff modeling.  

Such event based hydrometeorological studies do not explicitly connect to climate dynamics. 
However, there is a recognition that especially for larger river basins, a teleconnection to an 
oceanic moisture source, rather than just local convection is likely necessary for generating the 
extreme precipitation associated with a large regional flood. Further, antecedent soil moisture or 
snow conditions that may contribute to enhanced flood potential may in turn be the consequence 
of persistent moisture transport into the basin from the same oceanic source. Thus, for extreme 
floods, large scale climate dynamics associated with oceanic moisture convection and organized 
transport of this moisture to a continental region may be important.  The long term recurrence 
and progression of such climate conditions may be more predictable from dynamical or 
statistical models than the prediction of the frequency and intensity of local/regional extreme 
rainfall and the associated land hydrology. In this regard, research has focused on: 

1. A general characterization of the climatology of floods across the United States: 
seasonality and associated storm tracks  

2. Detailed investigations of the climate precursors and mechanisms associated with certain 
large floods, e.g., 1993 Mississippi, 1988/1997 American River, 2004 Russian River. 

3. Global or continental scale modeling of flood potential in a changing climate using a 
chain of GCM-RCM-hydrological model, but without necessarily a detailed examination 
of the causal chain. 

4. Statistical predictability or connection of extreme floods to concurrent or season-ahead 
climate precursors, especially for the Western United States. The role of atmospheric 
rivers has been highlighted as a part of this story. 

Our preliminary work suggests that retrospective GCM runs for the 20th century are marked 
by significant biases in the spatial distribution, magnitude and frequency of extreme rainfall over 
a given region. On the other hand, reanalysis data often reveal persistent and well organized 
storm tracks and oceanic moisture sources associated with large regional floods in most regions 
of the United States. There is some evidence that inter-annual to decadal climate modes such as 
ENSO, PDO and NAO modulate these storm tracks and hence flood potential. Similarly, intra-
seasonal variability, possibly tied to features such as the MJO may influence the location and 
persistence of tropical oceanic convection that serves as a moisture source for continental floods. 
An open question is whether floods in a particular region correspond to random synoptic 
structures, or whether such synoptic features are in turn predictable (at least probabilistically) 
given climate precursors. If there is structure and conditional predictability associated with such 
events, then a diagnosis of the associated causal chain connecting slowly evolving ocean-
atmosphere-land hydrologic conditions to persistent, large scale flooding is of considerable 
interest. Since at least in certain parts of the country, extreme precipitation episodes represent a 
large contribution to the annual/seasonal precipitation, this understanding would also contribute 
to a more general improvement in the understanding and modeling of the hydrologic cycle.  

Note that the discussion here is aimed at large regional floods and not at flash floods that 
may occur over a relatively small urban or rural area. In this context we propose to explore a set 
of empirical hypotheses en route to the development of a methodology for climate informed 
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dynamic (i.e., conditional on observed or modeled variables that are changing with time) flood 
risk assessment. These hypotheses can be stated as: 
1. The potential for a flood larger than some return period (T>T*) for a sufficiently large river 

basin (drainage area A>A*), in a region B (defined by latitude, orography, continentality) is 
determined predominantly by identifiable large scale storm tracks and atmospheric 
circulation anomalies.  

2. For floods that meet the criteria in 1., the circulation anomalies and antecedent soil moisture 
or snow conditions can in turn be related to identifiable patterns of persistent SST’s for the 
current and prior season. 

3. Interannual and longer variations in SSTs, will map into identifiable clusters of storm tracks 
and space and time clusters in flood response consistent with the phase of the SST field. 

4. The identification of these patterns from re-analysis and from retrospective GCM runs for 
the 20th century will permit a significantly better analysis of biases in the extremes of the 
continental hydrologic cycle in these models. 
Since flood seasonality varies across the United States, so do the associated causal climate 

mechanisms. Exploratory analyses of the above hypotheses will be pursued across the United 
States. A byproduct of the work will be the development of empirical, statistical teleconnections 
between regional flood potential and an appropriate set of climate precursors identified from 
observed or modeled climate state variables. These could be used to facilitate seasonal prediction 
or to improve the downscaling of flood risk from GCM based climate change scenarios.  
 
2. Objectives  

The intellectual framework of the proposed research is suggested by the hypotheses outlined 
in the previous section. This exploration has as its end point a statistically based inference and 
modeling system for the conditional simulation of floods given climate attributes. The 
integration is across a variety of hydrologic and climatic data sets, both historical and those from 
numerical models.   

The objectives of the proposed research are to: 
 Assemble a comprehensive, linked and accessible data base of US hydroclimatic data that 

supports the exploration of the hypotheses listed above.  
 Use statistical tools to explore each hypothesis listed in the previous section for specific 

regions and seasons 
 Develop a formal Bayesian inference framework for assessing the causal chain for regional 

floods and for predicting the conditional distribution of floods in the region given a suite of 
modeled or observed climate precursors. 

 Apply this framework to evaluate, understand and reconstruct the changing patterns of 
extreme floods conditional to interannual to decadal climate variations in the last century, 
and to those projected by a selected anthropogenic climate change model.  
We will restrict our analyses in several ways. First, we will focus only on floods recorded at 

all USGS gages in the lower 48 states whose annual maximum flows are not significantly 
affected by regulation or diversion. Second, we will limit the storm track analyses predominantly 
to non-snowmelt driven floods. However, we will consider relationships between winter/spring 
SSTs and dominant atmospheric circulation modes for the snowmelt related events.  
 
3. Background 
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Flood Hydroclimatology is defined by Hirschboeck1-6 as the study of the climate context of 
floods, i.e., an understanding of the long term variation in the frequency, magnitude, duration, 
location and seasonality of floods as determined by an interaction of evolving regional and 
global ocean and atmospheric circulation patterns. Climate undergoes natural fluctuations 
through persistent and oscillatory regimes (e.g., ENSO) at interannual to century to paleo scales, 
and as a function of anthropogenic changes of the atmosphere and land surface. We need to 
know how the large scale climate is evolving over inter-annual and longer time scales and hence 
changing the “odds” for local precipitation and soil moisture, and hence for floods. It is argued 
that flood frequency is quite sensitive to modest changes in climate7. 

One approach8 to connect climate to floods has been to use a numerical model of the coupled 
ocean-atmosphere system to drive a basin hydrologic model under control and anthropogenic 
forcing to assess changes in regional flood potential. This approach is attractive because it brings 
the known physics of the system to bear on the problem, and is a way to directly consider what 
may happen in a CO2 enriched world. The same approach could also be used to assess the 
potential for floods in the upcoming wet season if an ENSO event were forecast. However, often 
due to limits of knowledge, impacts of model resolution, and other factors, the numerical model 
integrations tend to have significant biases in the first two moments that are addressed using 
statistical methods at the tail end of the modeling process9-11. Such biases can be quite severe, 
particularly for precipitation, and as the length of the forward integration or simulation increases. 
The alternative approach, using model-based re-analysis products, while still marked by 
differences from observations, tend to be considerably better.  While the numerical model chain 
approach is a legitimate research direction, here we take a different perspective. 

We note Hirschboeck’s hypothesis5 that “unusually large floods in drainage basins of all 
sizes” may be related to large scale atmospheric circulation anomalies.  Hence, understanding 
how storm tracks shift may be key to understanding how the frequency, intensity and location of 
hydrologic extremes may evolve as climate changes. Her observation is that meridional moisture 
transport from the Pacific and the Atlantic Oceans leads to most extreme floods. Our preliminary 
work confirms this observation. Further, it is possible to identify storm tracks or large scale 
atmospheric moisture transport in climate models associated with floods, and to relate it to the 
climate context -- persistent Sea Surface Temperature (SST) patterns. This is where we direct our 
work. 

3.1 Floods and spatial scale 
Floods are ubiquitous. They occur in all parts of the USA and in all seasons. Flood event may 

last minutes with a spatial scale of a few km2(flash floods) or months with a spatial scale in 
excess of 106 km2 (e.g., the 1993 Mississippi flood). Here, we are primarily concerned with 
extreme floods over large areas, and correspondingly longer durations. The flood dynamics are 
more complicated as drainage basins larger than 104 km2 are considered since (a) the potential 
for high heterogeneity in the initial soil moisture field is greater, and (b) the direction and 
location the storm moves through the basin lends a significant heterogeneity to the rainfall 
distribution as well.  

The literature12-18 on the scaling properties of floods with drainage area suggests that 
precipitation input type (e.g., convective dominated, vs. snowmelt, vs. frontal) and drainage 
network attributes, jointly determine different scaling behaviors of discharge with area. There is 
evidence that these scaling exponents for floods will actually vary across events or types of 
events in the same location, likely because of differences in storm tracks and drainage area 
precipitation coverage. As the drainage area increases dramatically (e.g., upper + lower 
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Mississippi) it is not clear whether these scaling relationships will hold since a mix of 
mechanisms may be at play in generating such large floods. However, for data from Brazil, we 
are able to establish how the scaling exponents for floods with area vary across years and relate 
to large scale climate conditions79.  

The key points are that (1) analyzing flood return periods using a physically based approach 
becomes quite difficult as the drainage area grows due to the complex interplay between surface 
conditions and rainfall patterns; (2) heterogeneities and spatial and temporal non-stationarities in 
surface attributes and in rainfall attributes pose a significant complication; (3) larger scale 
advective moisture input may be a key factor in overcoming initial heterogeneities in surface 
conditions and in maintaining an increasing flood potential as drainage area and return period 
increases; and (4) persistence of storm tracks and their alignment with the drainage basin may be 
a factor in determining flood potential.  

Hirschboeck1, 3, 4 emphasizes the importance of mesoscale convective complexes and 
mesoscale convective systems, which are multicelled organized storm systems and can affect 
areas up to 104 km2  and persist for several hours.  Based on data collected over 1999-2003 these 
features are very common as a source of “extreme rainfall” in the region east of the Rockies 19, 20. 

There is evidence21, 22 that these features’ 
maintenance and evolution may be related to 
large scale atmospheric circulation features. 
As the scale increases, tropical and 
extratropical cyclones and associated fronts, 
and orographic lifting become important for 
large rainfall production for large areas and 
subsequently flooding potential. These are all 
directly related to large scale circulation 
patterns, and have well defined moisture 
tracks i.e., organized regions with high 
moisture transport over a thick atmospheric 
layer.  The climatology of moisture transport 
tracks into the US, by season, is illustrated in 
Figure 1 (left).  

 
3.2 Large Scale Moisture Teleconnections, Extreme Rainfall and Floods 

Remarkably, very few, if any, studies have systematically looked at extreme floods 
nationally, while establishing the hydroclimatology context: atmospheric circulation, regional 
soil moisture, and related SST anomaly fields. The sparseness of precipitation and gage 
streamflow data coupled with the high variability of precipitation and the inability to readily 
compute basin precipitation in an automatic way are factors. However, there has been at least 
one study30 that has tried to identify the most extreme events as a function of averaging area 
(1950-1996 period, 2 day 10km by 10km gridded rain over 10 overlapping circular regions from 
2500 to 500,000km2) and the associated hydroclimatic mechanisms. The largest events across the 
most scales in the Midwest were in 1968 and 1973 fall over Kansas, and are associated with 
strong transport of Gulf moisture by an interacting system of slow moving cyclones. In the 
Northeast and Southeast, the most significant rainfall events were all associated with tropical 
storms and hurricanes at all spatial scales. Tropical cyclones were prominent also in the South-



 8   

Central region at all scales. Thus, in almost all cases for the regions considered, large scale flow 
systems dominate intense rainfall with large area coverage, and also down to the smaller scales.  

The 1993 Mississippi flood has seen extensive research aimed at understanding the large 
scale climate context and its interactions with local factors31-55.  First, we note that there is 
considerable variety in the attributions of the flood to teleconnections with large scale 
mechanisms or to local feedbacks. Indeed54, indicate concerns with the ability of the General 
Circulation Models (GCMs) to resolve the debate. In a comparative study with 3 different 
GCMs, they are able to successfully reproduce the 1993 flood response forcing the model with 
the observed Pacific SST field. Observational analyses using re-analysis data suggest38 that 
leading summer circulation mode defined through an eigenvector analysis of vertically integrated 
and seasonally averaged summer moisture flux interannual variability projects well on the 1993 
flood, while the second mode projects on both the 1993 flood and the 1998 drought. So, at least 
there is some empirical evidence that the opposite signs of the Pacific SST anomaly induce large 
scale circulation patterns in the summer that lead to a strong low level meridional moisture flow 
in the one case and its absence in the other. The wet events are marked by an enhanced westerly 
flow over the Eastern Pacific and Western N. America over the 30 to 40 N band44. This flow is 
accelerated by synoptic scale eddies and corresponds also to a stronger low level jet (LLJ) that 
brings moisture from the Gulf of Mexico. These features are predicted quite well by the NCEP 6 
hour forecast. Thus, even though the longer run GCM integrations lead to controversial results, 
the re-analysis or near real time models with higher spatial resolution are able to follow the 
atmospheric dynamics, and the larger scale flow features implicated in the event are reproduced.  
 Looking to the Western United States, the change in flood frequency along a latitudinal 
gradient along the Pacific Coast has been documented57. Effectively, in El Nino conditions the 
storm track shifts to the South, and under La Nina conditions it shifts to the North, following the 
East-West movement of the convection center in the equatorial Pacific (5 to 10 N). In this 
context  it is also of interest to bring up the Atmospheric or Tropospheric Rivers57-67. 
Tropospheric moisture is organized in distinct bands or rivers that have spatial scales of 10 to 50 
km by several hundred kilometers long and lifetimes of 10-14 days. The moisture flux in some of 
these tropospheric rivers can be as much as the flow of the Amazon River60. There is evidence 
that the life cycle and spatial evolution of these patterns is tied to frontal systems and to larger 
scale climate dynamics. These systems are linked to the sea surface temperatures (SST) in the 
tropical and extratropical Pacific Ocean, and to the associated Sea Level Pressure (SLP) patterns. 
Typically the river starts at a zone of major oceanic convection and follows a coherent curved 
path till landfall.  The tropospheric rivers have been linked directly to flood events. Effectively 
the system is a highly organized low level flow that undergoes orographic lifting on landfall in 
California producing high precipitation and hence floods.  

In prior work23-28, we were able to show that annual maximum floods in the Western United 
States were (a) not independent and identically distributed, (b) they were correlated to ENSO and 
to the PDO, (c) their power spectra and spectral coherence typically had statistically significant 
peaks in the ENSO band and in the decadal band –i.e. flood occurrence is likely to be clustered, 
(d) flood occurrence in the Pacific North West is negatively correlated with flood occurrence in 
the Pacific South West, (e) the flood response was consistent with atmospheric pressure and 
wind system changes in response to the Pacific SST field, and that (f) the annual maximum flood 
at many of these sites was statistically predictable using prior season ENSO and PDO indices. 
Floods in the Western USA are known to be dominated by fall to spring frontal systems and 
organized moisture transport forced by large scales even in the summer (Arizona, New Mexico – 
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North American Monsoon). Thus, at least in the West, there is evidence of annual maximum 
flood’s dependence on large scale climate. Selected results are shown in Figures 2 and 3.  
 
3.3 Conceptual Model 

A conceptual structure of how multiple processes may interact at different scales to 
determine the recurrence rate for extreme floods in a large river basin is introduced using 
Figure 4.  Consider that the oceans have a frequency spectrum that has interannual (e.g., ENSO) 
and decadal (e.g., NAO or PDO) variations related to internal ocean-atmosphere dynamics, and a 
component that represents a secular trend related to anthropogenic warming. By contrast, the 
land surface soil moisture and snow fields decorrelate at a seasonal time scale if they are not 
forced by precipitation that is the carrier of interannual or longer memory. In this paradigm, the 
large scale ocean-atmosphere system is the carrier of the low frequency information, while the 
dynamic land surface properties (i.e., soil moisture and snow) would serve to add persistence to 
the low frequency climate trajectory, as it adjusts to it. Note that the idea is not that this is 
always true, but that this may be the case when very strong and persistent large scale advective 
moisture gradients are established. The atmospheric circulation, which has a time constant of a 
few days, then evolves to a regime that is consistent with the more slowly evolving surface 
boundary conditions.  This could in some cases set up a persistent storm track into a region, or 
lead to a block for some region, dramatically changing the flood potential. From Figure 4, we 
note that if we accept that the surface conditions add persistence and are not a negative feedback 
once the patterns set up, then until the march of the seasons (i.e., changes in radiative forcing) 
break the pattern the large scale system may persist, and knowledge of the intermediate variables 
in the chain between SST and Flood Potential may only have a second order influence. We 
believe that this is the reason for the success in forecasting the annual maximum flood in the 
Western U.S. using only a few SST variables. Even if this situation were set, there is likely to be 
a fair amount of heterogeneity in the spatial distribution of moisture for most events and the local 
feedbacks and interactions would be necessary to monitor. At the event time scale, the feedback 
from the local surface properties is important to integrate into a physical description of the 
process. Given the arguments above, if the SST anomaly were strong enough and persistent 
enough, then the circulation pattern that is set up will persist, and the local soil moisture 
feedback will adapt to it.              
A secular change in atmospheric properties (CO2), in surface radiative forcing and in the ocean 
temperatures, would translate into changes in the land-ocean temperature contrast, the equator to 
pole temperature gradient29,  and hence in the jetstream dynamics as well as in the dynamics of 
summer convection and tropical cyclones. All these imply significant changes in the strength and 
location of the climatology of the moisture pathways and in the moisture holding capacity of the 
atmosphere. However, it is not clear whether, where and in which season, the balance between 
large scale advective forcing of floods and soil moisture feedback to local convection may 
change.  
4. Methodology 

As was stated earlier, there are three major components to the proposed research: 
1. An exploratory, diagnostic analysis  of the climatic drivers of extreme floods over large 

basins in the United States 
2. The development of a Bayesian inference framework to connect  flood incidence and 

severity to appropriate climate predictors in a spatio-temporal framework 
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3. The investigation of the implications for flood frequency changes given either projections 
of anthropogenic climate change or seasonal climate forecasts. 

We recognize that the mechanisms involved in generating extreme floods in the United 
States vary by season and by location. Consequently, we propose to investigate the climate 
teleconnections and potential predictability of extreme floods (return period T>T*, varying T*) 
over large basins (A>A*, varying A*) over the entire lower 48 states. However, the other 2 
components of the proposed research will be pursued only for selected regions and seasons. 
Clearly, the Bayesian model developed will be general in application, but will be tested only for 
1 or 2 regions where there is significant potential for predictability and hence high utility.  We 
anticipate that the Western United States will provide one of these regions, and the other will be 
selected from either the Midwestern region or the Eastern Region.  

Given the discussion in the previous sections, we reiterate that in providing a climate context 
for flood risk in a river basin one needs to consider hydroclimatic information across space and 
across time, beyond that considered in the analysis of the individual flood event. Thus, a storm 
track may not correspond just to the atmospheric moisture transport into the river basin on the 
day of extreme precipitation or flood. Rather, it could refer to a persistent moisture transport into 
the region over a period of weeks that sets up the antecedent moisture conditions that may then 
facilitate the production of an extreme flood. Animations of precipitation and vertically 
integrated atmospheric moisture transport for selected recent flood events are presented at 
http://rainbow.ldeo.columbia.edu/~jennie/FLOOD/. Consider the June 2008 Midwest flood 
event, and the associated animations. One notes that a persistent moisture source located at 
approximately 10° N and 90° W leads to multiple days of pulses of moisture coming to the 
subsequently flooded region. An examination of the other examples on this page illustrates how 
synoptic circulation patterns can vary over a season moving the spatial location of the moisture 
transport and precipitation field back and forth over a region, even as the oceanic source of 
moisture persists in roughly the same location. Such an observation poses a significant challenge 
for formally connecting the flood outcome to the causal chain postulated in Figure 4, since 
appropriate statistics of the intermediate variables would need to be derived considering the 
spatio-temporal structure indicated by the synoptic conditions.  However, if the moisture source 
can be identified by extending the moisture trajectories back from the flood location to the 
oceanic source, or through direct correlation/compositing, then the challenge posed by the 
intermediate spatial variation of the moisture track is mitigated. How some of these challenges 
can be addressed is discussed here, after considering the data sources that are available for the 
purpose (Table 1). The key tasks envisaged are outlined below. 
Task 0: Develop a Comprehensive Data Library for integrated access to all relevant 
hydroclimatic data fields for major US Floods 
We’ll extend the IRI data library to provide geo-referenced and event or time window access to 
all relevant data (historical flows, re-analysis, IPCC regional projections, GCM forecasts) as 
identified in Table 1, and as per processing indicated in Task 1. 
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Table 1. Data sets to be used to analyze flood-climate relations 
Resolution 

Data Description 
Temporal Spatial 

Level Source and Availability 

Specific Humidity, Wind 
Vector, Omega, Geopotential 
height 

Pressure 

Sea Level Pressure, Sea 
Surface Temperature 

2.5°×2.5° 
Variable 
but down 
to 0.3° for 

NARR Surface 

Relative Vorticity, 
Divergence 

Pressure 

Precipitation Rate, Soil 
Moisture Content 

3 hourly 
(NARR) 
or Daily 

1.9°×1.9° 
Variable 

Surface 

ECMWF ERA-40 (1957-2002), 
NARR (1979-2007), NCEP 
Reanalysis (1948-Date), CCM3 
(1856-2007), 24 IPCC AR5 Models 
(20th and 21st century), Kaplan SST 
(1856-Date monthly) 

Precipitation, Max/Min 
Temperature 

Daily Station Surface NCDC TD3200 (1950-2004) 

Precipitation Rate Daily 
1.0°×1.0° 
archive 

0.25°×0.25 
Surface 

NOAA NCEP CPC Regional US-
Mexico (archive 1948-2004, real time 
2001-Date) 

Daily Mean Discharge Daily 

Monthly Mean Discharge Monthly 

Annual Maximum Discharge Annual 

USA Surface 
USGS 
NWIS (1950-Date) 

 
Task I: Exploratory National Scale Analysis of Climate-flood-spatial scale connections. 
1. The USGS daily flow and annual maximum flood data sets will be processed to retain 

stations with continuous records that extend to at least 1950, drainage area in excess of 1000 
sq. miles, and whose flood records are free from the effects of diversion and flow regulation.  

2. At each station, the annual maximum flow record will be used to estimate the T year flood 
magnitude, for varying T = 5, 10, 20, 50. Next, all daily flows whose magnitudes exceed this 
threshold (partial duration series) will be identified and their dates will also be recorded.  

3. A cluster analysis will be performed on these dates to identify a set of stations with common 
seasonality. A method that accounts for the annual cycle (circular data) will be used. 

4. For each cluster, a set of stations that allow nested spatial analysis and covers a range of 
drainage areas in an area with roughly the same climate, and have comparable record length 
will be selected. For each station, and for each flood event an estimate of the atmospheric 
moisture flux/storm track will be made using the re-analysis data fields. The storm track will 
be identified as a connected set of grid boxes that is in the vicinity of the drainage basin of 
interest and has a vertically integrated moisture flux that is above some threshold.  

5. All storm tracks (including days preceding the major event) for all the flood events at a site 
will then be clustered. The clustering algorithm we propose to use will cluster based on the 
origin, length and geometry of track as well as on the magnitude and persistence of the 
moisture flux. A recent algorithm that would be suitable for such a classification has been 
applied to hurricane tracks80.The associated probabilities and intensities will be estimated to 
aid prediction, simulation, flood frequency analysis, and the correspondence with the larger 
scale atmospheric circulation. The goal of clustering is to permit a statistical analysis of the 
data set by having a sample size over which one can average, and reduce the uncertainty 
associated with looking at individual events.  
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6. For each cluster of tracks, we can compute the average rank (and its spread) of the associated 
flood event in the historical record. The cluster attributes can then be compared versus the 
rank (implicitly the return period) of the event. For instance if the tracks associated with a 
cluster with predominantly high rank floods is long, meridional and has the highest ranks of 
moisture flux, while the second cluster has relatively short tracks with no preferred 
orientation and moisture fluxes with low ranks, then cluster 1 would correspond to large 
scale forcing and cluster 2 to local or synoptic activity. If there is no discernible pattern to the 
flood ranks, and the track attributes in the clusters then the hypothesis that as the return 
period of the event increases, the likelihood that the mechanism is large scale flow is 
rejected. Bootstrap techniques could be used to check the statistical significance of the cluster 
assignments and attribute differences.  

7. If we do identify a cluster that corresponds to large scale fluxes, then composites of 
atmospheric circulation fields  averaged over all events in that cluster could be developed to 
identify the large scale SST pattern, steering winds, convergence, outgoing longwave 
radiation and vorticity. These would then help develop an empirical understanding of the 
associated climate mechanism for that category of floods.  If there are an adequate number of 
events in the cluster of interest, then further dividing the cluster on the basis of the 
atmospheric or SST patterns (e.g., the eigenvectors of these fields) would be useful.  

8. Once tracks, clusters and composites for each station have been identified, they will be 
pooled to identify superclusters. The idea here is that if the “large scale” clusters of all 
stations with a drainage area greater than some threshold cluster into the same cluster, then 
we have identified an area threshold beyond which essentially there is a common large scale 
operative mechanism. The information as to the average return period at which this happens 
can then also be improved since the cluster is much larger (even if the same events are being 
co-classified). Similarly, the reliability of the ocean/atmosphere composites associated with 
each cluster can be improved by superclustering.  

9. Review the composition of the superclusters to see if high return period events for all stations 
are classified into the same clusters, or if the high events below some drainage area threshold 
are clustered with the “local” cluster for the larger basin. This analysis will then allow us to 
identify the threshold area A* , and the corresponding probability of exceedance p* beyond 
which large scale fluxes dominate the flood process, if such a separation is feasible.  
Two situations of interest are illustrated in Figure 6 below. We consider two gauging stations 

in Iowa. The first with drainage area 347 km2, and the second with drainage area 8424 km2. The 
moisture flux on two separate days with extreme flooding is estimated using NOAA reanalysis 
data set. Figure 6 suggests that large scale moisture transport and circulation patterns are 
involved in these two events, with very similar storm track orientation through the affected 
region, but the strength of the track is different in the two years.  We can get some insight as to 
the possible difference between high and low return period floods by looking at the average Sea 
Level Pressure anomalies associated with the largest (30%) and smallest (30%)  of the annual 
maximum floods at the Iowa entire gages. These are illustrated in Figure 5. Note that the 
climatology has a general mid-continent low pressure consistent with our expectation of summer 
heating and the associated convection. For the larger floods the low has intensified in a 
meridional direction southwards reflecting the potential for an enhanced Great Plains low level 
jet (LLJ) and increased moisture transport from the Gulf of Mexico. At the same time the 
continental high latitude region has a positive SLP anomaly suggesting that the LLJ will likely 
interact with an upper westerly flow as discussed earlier in the context of the 1993 flood, and 
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also evident in Figure 5. Conversely, the case of the lowest annual maximum floods has a slight 
positive SLP anomaly in the area and a rather different high latitude pattern that may translate 
into a different upper zonal flow pattern. Likely, this situation is marked by local convection 
flooding (high recycling) and has lower advective fluxes into the region. 
 
Task 2: Bayesian Inference for a Climate to Flood Causal Chain for a Region: 
The exploratory analysis will identify a promising region for formally developing the flood-
climate relationships, and a suite of climatic variables that connect the flood magnitude to an 
ocean-atmosphere causal chain. This causal chain can be modeled as a Dynamic Bayesian 
Network or DBN 68. DBNs are popular because they can efficiently encode multi-variable 
dependence. They consist of a set of nodes representing a state variable at a given time, 
connected by arcs representing the conditional dependence structure. A feed-forward, multi-level 
structure is feasible. The conditional probability distribution (CPD) of each node can be 
estimated using only the probability distribution of the nodes upstream of it. Thus, the DBN 
allows a decomposition of a complex high dimensional probability estimation problem into a 
structured Markovian dependence structure that is lower dimensional and hence easier to 
perform estimation on given finite data. The spatial scaling of floods with area can be 
incorporated directly in this framework as in Lima and Lall (2009)79.  
Specifically, let itQ ,Q be the flooding discharge at ],,2,1[ Tt   for drainage basin 

],2,1[ i , similarly soil moisture states are it ,ω , space and time rainfall is itR ,R . Also, 

let, jt ,ξξ  be the atmospheric circulation pattern and jt ,Γ  be the Sea Surface Temperature at 

],,2,1[ Tt   for different zones ],2,1[ j  or different components of singular value 

decomposition. Let the attributes of the drainage basins be, ],...,[ 1 iXXX . The joint probability 

distribution of the flood is written as: 
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Having defined a candidate structure of the DBN, we now need perform inference in such 
model. There are a variety of inference techniques one could employ 69-72. We intend to use the 
Gibbs sampler which is an effective Markov Chain Monte Carlo method for simulating  the 
posterior probability distribution of the data field conditional on the current choice of 
parameters70, 73-78.   

Task 3: Explore the implications of seasonal climate forecasts or IPCC scenarios 
Once the DBN is developed using data for a region, it is effectively a predictive and a diagnostic 
tool. Instead of using re-analysis climate data we can now use forecasts from GCMs of the same 
predictive variables and use them to assess how the probability distribution of floods in the 
region may change in a climate change scenario. Of course, one would want to ensure that the 
attributes we used to build the model are actually well reproduced in the GCM under the climate 
change or seasonal forecast scenario. The procedure we anticipate is to: 
1) Assess biases and uncertainties in the first two moments of the probability distribution of 

each of the variables (e.g., SST, precipitation, SLP) in the retrospective runs of the GCM’s 
relative to re-analysis over the corresponding period, and for the relevant calendar months 
(seasons). A multi-model GCM analysis is envisaged here. For the specific regions of 
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interest, the extreme rainfall events in the GCM  simulations (retrospective seasonal forecasts 
or 20th century AR4 or AR5 simulations) will be identified and the frequency of exceedance 
of these events will be compared with those in the historical record. Correspondingly, the 
storm track information will also be compared using clustering to identify spatial biases. 
Finally, low frequency variability will be compared using multi-taper SVD analysis with 
wavelets81 to the threshold exceedance data.  

2) Apply these projections to directly estimate the conditional probability distribution of floods 
at the sites in the region. Compare the resulting probability distributions with those from a 
restricted model that considers only the conditioning of site flood flows on the projection of 
daily precipitation from which event precipitation and antecedent soil moisture could 
potentially be derived. For a specific application we may use a hydrologic model with 
precipitation projections to develop a comparison as well. Compare the differences in the 
application of these methods to the historical data and the GCM scenarios. Assess how the 
relative change over the 21st century can be assessed including uncertainty characterization. 
 

5. Relevance to CPPA and Anticipated Benefits 
The proposed project addresses research priorities #3 and #1. By developing and applying new 
statistical methodologies for flood-risk assessment and prediction at ISI timescales based on 
GCM seasonal forecasts and historical data, the proposed work directly addresses FY2010 
Priority #3. The proposed work will examine GCM climate-change scenario runs from CMIP3 
(and CMIP5 when they become available), within the context of changing flood risks, thus also 
addressing FY2010 Priority #1 (subcompt. 1). The project results evaluate these models from the 
hydrologic standpoint, and develop changing flood-risk scenarios at regional scale. 
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Figures (Figure 1 is embedded in text – rest are here) 
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Figure 2: Using all USGS stations in each state, the 10 largest and 10 smallest annual maximum 
flood years were identified. a) composite of SST for DJF for the largest (left) and smallest (right) 
floods. b) example of all SST, OLR, SLP, Wind composites for the two conditions for Oregon. 
We see clear, physically meaningful shifts in space and across the seasonal climate composites, 
even though the flood events last only a few days. Much of the total seasonal precipitation in the 
West is associated with these extreme events.
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Figure 3: Empirical 
prediction of annual 
maximum floods at 114 
stream gages in the Western 
United States. a) Each site 
was classified into a cluster by 
the seasonality of the floods at 
the site, using k-means with 
the calendar date of each 
annual maximum flood event.  
The map shows the cluster for 
each site, and the insets show 
flood counts for each calendar 
months for each cluster.  b) 
Unexplained cross-validated 
variance for site by site season 
ahead forecasts of the annual 
maximum flood using a 
nonlinear regression with 
model averaging method are 
shown. The four predictors 
used are the pre-season 
NINO3.4, PDO and the trend 
in NINO3.4 and PDO for the 
prior season. The unexplained 
variance typically decreases as 
drainage area increases. c) 
The empirical, cross validated 
forecasts for 4 sites (1 per 
cluster) with 5, 25, 50, 75, 
95% prediction intervals. The 
circles are the observed floods 
for the upcoming season. 

The prediction skills are 
remarkable for the clusters 
where the flood season is 
winter/spring. Further work 
on understanding the detailed 
ocean-atmosphere 
mechanisms that are 
associated with this 
predictability provided by the 
NINO3.4 and PDO indices is 
needed.  

Unexplained Variance = 

Unexplained Variance = 
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Figure 4. Conceptual Representation of the Climate to Flood Causal Chain showing the possible 
interactions between large scale and local factors, and some potential feedbacks.  The flood potential 
is for an event. The SST field is assumed to persist well beyond the duration of the flood event. The 
subscript t refers to the event time, t- to prior to the event, and t* to both (t-,t). The local convection 
box marks the interaction between the large scale flow and local feedbacks in generating the event 
space-time rainfall distribution. Bi-directional feedbacks between the SST and the atmospheric 
circulation and between regional soil moisture and large scale atmospheric circulation are considered.  
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Figure 5.  Vertically integrated moisture flux for July 9, 1969 (a) and (b) and July 3, 1999, (c) and 
(d). The flux is computed for a lower level (1000-850 mb) (a) and (c), and upper level (b) and (d). In 
1969 a the annual maximum flood was experienced at both locations in Iowa. In 1999, the flood was 
experienced only at the smaller watershed. The arrows show the wind direction while the shading 
shows the intensity of the moisture flux. Only pixels whose moisture flux magnitude is in the top 5% 
of the visible map are shown. Note that a large scale meridional low level flow is active in both cases.  
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Figure 6.  (a) Climatology (Mean) Sea Level Pressure (SLP) for summer (May to July) (b) SLP 
Anomaly corresponding to the highest (30%) annual maximum floods at the Iowa gauge (c) SLP 
Anomaly corresponding to the lowest (30%) annual maximum floods at the Iowa gauge 
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MASON, S.; TRZASKA, S.;  GODDARD, 
L.; GREENE, A.; ROBERTSON, A.; SUN, 
L.; QIAN, J.; CAMARGO, S.; TIPPETT, M.; 
DEWITT, D.; LI, S.; GIANNINI, A.; BELL, 
M.; BLUMENTHAL, M.; CONNOR, S.; 
DEL CORRAL, J.; CECCATO, P.; LYON, 
B.;  CONRAD,  E.; BAETHGEN, W.; 
SOMESHWAR, S., DINKU, T.; OMUMBO, 
J., HELLMUTH, M., LIU, H., BARNSTON, 
A., LEE, D., INES, A., MADAJEWICZ, M.)    

DOE Renewal of Collaborative Research: 453,096  7/15/02 NC/NC/NC 
DE-FG02-
02ER63413 

 Regional Climate-Change 
Projections through Next Generation  7/14/2010 NC/NC/ 

 Empirical and Dynamical Models   1/1/1 
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CO-PIs w/NAKAMURA, J.)    



 37   

NASA Using Remote Sensing to Calibrate 109,782 1/1/2009 NC  
#12448 And Audit Weather Insurance   6/30/2010 LDEO 

 
Contracts (OSGOOD, D., PI; SMALL, C., 
CO-PI w/ROBERTSON, A., SHIRLEY, K.)    

 


