
102 December IRE TRANISACTIONS ON INFORMATION THEORY 

In addition to the scheduled program, the following two papers, by A. N. Kolmogorov 
and V. I. Siforov, were presented at the 1956 Symposium on Information Theory. However, 
the manuscripts were received too late for inclusion in the September (Symposium) issue 
of these TRANSACTIONS. The papers were submitted in response to our invitation to these 
distinguished Russian scientists, and the following translations were distributed to those 
attending the Symposium.--The Editor. 

. . 
On the Shannon Theory of Information Transmlsslon 

in the Case of Continuous Signals* 
ANDRE1 N. KOLMOGOROVi 

I. INTRODUCTION 

HE ROLE of the entropy of a random object 5, 
capable of taking the values x1, xZ, . . . , x, with 
the probabilities pl, pZ, . . ., p,, 

H(t) = - q P, log P, 

in information theory and in the theory of information 
transmission using discrete signals, can be considered to 
have been explained sufficiently. Furthermore, I insist 
that the fundamental concept, which admits of general- 
ization to perfectly arbitrary continuous information and 
signals, is not directly the entropy concept but the concept 
of the quantity of information I(,$, r) in the random 
object 6 relative to the object q. In the discrete case this 
quantity is evaluated correctly according to the well- 
known Shannon formula:’ 

IB, d = H(v) - MH(rl/t). 

For a finite-dimensional distribution, possessing density, 
the quantity I(F, 7) is determined, according to Shannon, 
by the analogous formula 

where h(q) is the “differential entropy” 

Wd = -1 P(Y) 1% P(Y) dY, 

and h(v/Q is the conditional differential entropy defined 
in an analogous manner. It is well known that the quantity 
h(t) has no direct real interpretation and is not even 
invariant with respect to coordinate transformation in 
the space of the x’s. For an infinitely-dimensional distri- 
bution, the analog of h(E) is nonexistent, in general. 

According to the proper meaning of the word, the 
entropy of the object .$ with a continuous distribution is 

* Presented at 1956 Symposium on Information Theory at 
Mass. Inst. Tech., Cambridge, Mass., September 10-12, 1956. 
Translated by Morris D. Friedman. 

1 Academician, Academy of Science, USSR. 
1 It seems expedient to me that the notation H(q/x) is the con- 

ditional entropy of v for t: = z and MH(q/f) is the mathematical 
expectation of this conditional entropy for the variable E. 

always infinite. If the continuous signals can, nevertheless, 
serve to transmit finitely great information, then it is 
only because they are always observed with bounded 
accuracy. Consequently, it is natural to define the ap- 
propriate “c-entropy” H,(f) of the object ,$ by giving the 
accuracy of observation E. Shannon did thus under the 
designation “rate of creating information with respect to 
a fidelity criteron.” Although choosing a new name for 
this quantity does not alter the situation, I decided to 
call your attention to that proposition by underlining the 
more widespread interest in the concept and its deep 
analogy to the ordinary exact entropy. I imply, before- 
hand, that, as remarked in Section IV, the theorem on 
the extremal role of the normal distribution (both in the 
finite-dimensional and the infinite-dimensional cases) is 
retained for the E entropy. Furthermore, I give in Sections 
II and III, without pretending to its unconditional new- 
ness, an abstract formulation of the definition and 
fundamental properties of I(E, 7) and a survey of the 
fundamental problems of the Shannon t,heory of infor- 
mation transmission. Certain specific results obtained 
recently by Soviet investigators are explained in Sections 
IV to VI. I wish to emphasize, especially, the very 
significant interest, as it appears to me, in the investi- 
gations of the asymptotic behavior of the e entropy as 
6 -+ 0. The cases investigated earlier 

1 
H,(l) - n log - ; E H&) = 220 

where n is the number of measurements and w is the 
bandwidth of the spectrum, are only very particular” 
cases of the rules which can be encountered here. In order 
to understand the perspectives disclosed here, my note: 
explained in another terminology, might be of interest: 
hence, I am placing a certain number of reprints at the 
disposal of the participants of the symposium. 

To a considerable degree, my report reproduces thtl 
contents of a report presented jointly with Iaglom and 
Gel’fand at the Third All-Union Mathematics Conference. 

2A. N. Kolmogorov, Doklady, AN USSR, vol. 108, no. 3, pp 
385-388; 1956. 
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However, since the present symposium is of a more 
engineering character, I omitted a number of mathematical 
details. The work of Khinchin on the logical foundations 
of the theory remains beyond the limits of my survey. 

As regards the work of Soviet radio engineers, you will 
hear about some of them from the other speakers. In the 
note itself, I will have occasion to note only the interest, 
in principle, of certain early work of Kotel’nikov, circa 
1933 (see Section VI, further). 

determines the random quantity c+ uniquely to the 
accuracy of probability zero. Sometimes, the following 
theorem formulated by Gel’fand and Iaglom3 is useful. 

Theorem: If X(X X Y) > 0, then I(& r]) = 00. If 
X(X X Y) = 0, then 

II. QUANTITY OF INFORMATION IN ONE RANDOM 
OBJECT RELATIVE TO ANOTHER 

Let [ and r] be random objects with regions of possible Let us enumerate certain fundamental properties of 
values X and Y, I@, d. 

PEW = J% E A); pm = P(,l& 8 
the appropriate probability distributions, and 

P,,(C) = P&7 d & c> 
the joint probability distribution of the objects [ and 7. 
By definition, the quantity of information in the random 
object ,$ relative to the random object 9 is given by the 
formula 

1) 
2) 

3) 

4) 
5) I[($, q), {] = I(q, {), if and only if E, 7, [is a Markov 

sequence, i.e., if the conditional distribution of l 
depends only on q for fixed .$ and r]. I(&, d = s, jy P&x dy) log $$ps- (1) 

Apropos property 4, it is useful to note the following. 

I($, 7) > 0; I(& r]) = 0 only if { and r] are independ- 
ent. 
If the pair (6, sl) and (&, r]J are independent, then 

I[(f, 4, i-1 2. ICE, i-1. 

The exact meaning of this formula requires certain eluci- In the case of the entropy 

dation and the general properties of I(.$, q), given later, m = a, 8, 
are correct only for certain limitations of a set-theoretical 
character on the distributions Pt, P, and PE,,, but I will there is the bound on the entropy of the (E, r]) pair from 

not dwell on this here. In every case, the general theory above: 

can be explained, without great difficulty, in such a way WE, 11) I mEI + H(7) 
that it-will be applicable to random objects .$ and 17 of 
very general nature (vectors, functions, generalized 

as well as the bound from below which results from 1 and 4. 

functions, etc.). WE, 11) 2 m; WE, 7) 2 m?d. 
Eq. (1) can be considered to be due to Shannon although 

he was limited to the case 
A similar estimate for the quantity of information in { 
relative to the (E, 7) pair does not exist. From 

P,(A) = s, PE(X) dx; P,(B) = j, P,(Y) dy 

PdC> = jj PEG, Y) dx dy 
c 

there still does not result the equality 

I[@, 71, i-1 = 0, 

when (1) transforms into 
as can be shown by elementary examples. 

For later use, let us note the special case when E and v 
are the random vectors: 

E = &I 9 . . - 7 ‘a 

Sometimes, it is useful to represent. the distribution P as 7 = (71, *.- , %J = (tm+1, *** , Em+n), 

Pt.,(C) = /[ 4x, y)Pddx)P,(dy) + s(C) (3 
and the quantities 

c El, (2, . * * , hn+, 

where the function S(C) is singular relative to the product are distributed normally with the second central moments 

PE x P,. sii = M(& - MM.5 - J&)1. 

If the singular component of X is lacking, then the formula 3 A. 9. Kolmogorov, A. M. Iaglom, and I. M. Gel’fand, 
“Quantity of Information and Entropy for Continuous Distribu- 

%I = a&, d (3) tions,” Report at Third All-Union Math. Conf., 1956. 



104 IRE TRANSACTIONS ON INFORMATION THEORY December 

If the determinant 

c = 1 sii llii.i<m+n 

is not zero, then, as was calculated by Gel’fand and 
Iaglom 

I(,& q) = f log T 

where 

A = I sii lm.ism; B = I sii lm<i,i<m+n. 

It is often more expedient, however, to use another 
approach without the C > 0 limitation. As is known,“ all 
the second moments sii except those for which i = j or 
j = m + i go to zero after a suitable linear coordinate 
transformation in the X and Y spaces. For such a choice 
of coordinates 

ICE, 71 = -5 c [l - Gk, %)I 
where the summation is taken over those 

k _< min (m, n) 

for which the denominator in the expression of the 
correlation coefficient 

The fundamental Shannon problem is the following. 
Given the spaces X, X’, Y, Y’ of possible values of the 
“input message” C;, the “output message” E’, the input 
signal q, and the output signal 7’; given the characteristics 
of the transmitter, i.e., the conditional distribution P,$,, 
and the class V of admissible input signal distributions 
P,; finally, given the distribution 

P,(A) = PC5 = A) 

of the input message and the “fidelity criterion” 

P,,f c w 

where W is a certain class of joint distributions 

PEE,(C) = PK‘t, E’) & Cl 
of the input and output communications. To find: Is it 
possible, and if it is, by what means, to give a coding and 
decoding rule (i.e., the conditional distributions P,,,p and 
PEf,,,,) in such a manner that by calculating the distri- 
bution Peg, in terms of the distributions PC, P?,c, P,,!,,,, 
P Z,,E under the assumption that the sequence 

E, 77, (‘1 qr 

is Markovian, we will obtain 

P,,l E W? 

As does Shannon, so let us define the “capacity” of the 
is not zero. transmitter thus 

III. ABSTRACT EXPLANATION OF THE PRINCIPLES OF THE c = ypy I(% 7') 
? 

SHANNON THBORY 

Shannon considers the transmission of information 
and let us introduce the quantity 

according to the scheme HA9 = inf I(.$, 5’) PE{‘“W 
t-‘q-+q’+f’ 

where the “transmitting apparatus” 

?1 + 7’ 

is characterized by the conditional distribution . 

P,,,@‘/Y) = PCs’ E B’lv = Y) 

of the “output signal” 7’ for a given “input signal” 9 
and a certain limitation 

P,E V 

of the input signal distribution P,. The “coding” 

t-+0 

and “decoding” operations 

rl’ + t’ 

are characterized by the conditional distributions 

P&I4 = P(,l E B/t = 4 

P,.,,,(A’/y’) = P(~‘E A’/q’ = y’). 

4 A. M. Obukhov, Izv. AN USSR, Phys.-Math. Series, pp. 
339-370; 1938. 

which Shannon calls the “rate of creating information 
relative to a fidelity criterion” when computed per unit 
time. Then, the necessary condition of the possibility of 
transmission 

H&9 5 C 

results at once from property 5 of Section II. 

(7) 

The incomparably deep idea of Shannon is that (7). 
when applied to the continuous operation of a “communi- 
cation channel,” is “almost sufficient” in a certain sense 
and under certain very broad conditions. From the math- 
ematical point of view, it is a matter here of proving a 
limit theorem of the following type. It is assumed that the 
space X, X’, Y, Y’ of the distributions Pt and P,,,,n of the 
classes V and W, and therefore, of the quantities C and 
H,(t), depend on the parameter T (which plays the role, 
in applications, of the duration of transmitter operation). 
It is required to establish that the condition 

lim inf ~ cT >I 
T-- H,T(l) 

is sufficient, under a certain sufficiently general character 
of the assumptions, for the possibility of transmission, 
satisfying the conditions formulated above, for sufficiently 
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large !!‘. Naturally, in such a formulation the problem is 
somewhat indistinct (for example, similar to the general 
problem of studying possible limit distributions for a sum 
of large numbers of “small” components). However, I 
intended to avoid any return to the terminology of the 
theory of stationary, random processes here, since it was 
shown in the note of the young Romanian mathematician 
Rozenblat-Rot Milu5 that interesting results can be 
obtained in the designated direction without the as- 
sumption of stationariness. 

Now, let us assume that X is a metric space and that 
the space X’ coincides with X, i.e., methods are investi- 
gated of the approximate transmission of information 
from the point 6 E X by using the indication of the point 
[’ of the same space X. It seems natural to require that 

PiP(‘i, c;‘) 5 el = 1 WS) 

or that 

Many remarkable works have *been devoted to the 
derivation of a limit theorem of the kind indicated. The 
work of Khinchin’ is the contribution of a USSR math- 
ematician in this research direction. It appears to me that 
much remains to be done here. Namely, results of this 
kind are intended to give a foundation to the widespread 
conviction that the expression I(.$, 7) is not just one of the 
possible methods of measuring the “quantity of infor- 
mation” but it is a measure of the quantity of information 
having an advantage, in principle, over the others, actually. 
Since the “information,” by its original nature, is not a 
scalar, then axiomatic investigations, permitting I([, 7) 
[or the entropy U(t)] to be characterized uniquely by 
using simple formal properties, in this respect have lesser 
value, in my opinion. The situation here seems to me to 
be similar to our being ready to assign, at once, the 
greatest value to that method, out of all those proposed 
by Gauss to give a foundation to the normal law of error 
distribution, which starts from the limit theorem for the 
sum of a large number of small components. Other methods 
(for example, based on the principle of the arithmetic 
mean) demonstrate only why any other error distribution 
law could not be as acceptable and suitable as the normal 
law but they do not answer the question of why the 
normal law is actually encountered often in real problems. 
Similarly, the beautiful formal properties of the expressions 
H(E) and I(.$, 7) cannot demonstrate why they are suf- 
ficient for the complete (albeit from the asymptotic point 
of view) solution of many problems in many cases. 

MP%, E’) i e2 we>. 

We will denote these two forms of the “e entropy” of the 
distribution Pt by 

Hw,d9 = f-c(E) 

Hw,(E) = H&l. 

As regards the e entropy Ht, I shall only note here a 
certain estimate for 

H%f> = s;p H:(E) 

where the upper bound is taken over all the probability 
distributions P( in the space X. As is known, for E = 0, 

H:(X) = sp”p H(t) = log N, 

where N, is the number of elements of the manifold A!. For 
c > 0, 

log N:(24 < H:(x) _< log N:(e) 

where N:(E) and N:(E) are characteristics of the space X 
which are introduced in my note.’ The asymptotic 
properties of the function N,(e) as c -+ 0, studied in my 
work’ for a number of specific spaces X, are interesting 
analogs of the properties, explained later, of the asymptotic 
behavior of the function H,(E). 

Let us now turn to the E entropy H,(l). If X is an n- 
dimensional Euclidean space and if 

IV. CALCULATION AND ESTIMATION OF THE e ENTROPY 
IN CERTAIN PARTICULAR CASES 

If the condition 

P,C! e w 

P,(A) = / PC(x) dx, dx, . . . dx, 
A 

then, at least in the case of the sufficiently smooth function 
pe (2)) the following well-known formula holds: 

is chosen as the certainty of exact coincidence of .$ and .$’ 

P@ = ‘$‘) = 1 

then 

HIV(l) = H(F). 

- 
H,(t) = n log 1 + MC;) - n log 427~31 + o(l) (9) 

where 

h(t) = - j- POX) log PAN dx, . . . dx, 
x 

In conformance with this, it seems to be natural to 
designate H,(t) in the general case as the “entropy of 
the random object t for the accuracy of reproduction W.” 

5 Rozenblat-Rot Milu, Trudy, Third All-Union Math. Conj., 
vol. 2, pp. 132-133; 1956. 

is the “differential entropy,” already introduced in the 
first Shannon works. Hence, the asymptotic behavior of 
H,(t) in the case of sufficiently smooth continuous dis- 
tributions in n-dimensional space is determined, to a first 
approximation, by the dimensionality of the space and the 
differential entropy h(F) only enters as the second term in 
the expression for H,(E). 

It is natural to expect that the growth of H,(t) as E -+ 0 6 A. Ia. Khinchin, Usp. ilf ate. Nauk, vol. 11, no. 1 (67), pp. 
17-75; 1956. will be substantially more rapid for typical distributions 
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in infinite-dimensional spaces. As the simplest example, 
let us consider the Wiener random function E(t), defined 
for 0 5 t 5 1, with the normally-distributed independent 
increments: 

4 = t(t + At> - t(t) 

for which 

E(O) = 0; MA.$ = 0; M(At)’ = At. 

Iaglom found that in this case, in the L2 metric 

Under certain natural assumptions, the formula 

where 

x(E) = j(’ im I 6 EC@ I di! 

(10) 

(11) 

can be obtained in a more general way for the diffuse 
kind of Markov process on the tG 5 t 5 t, time segment 
with 

M,, = A[t, l(t)] At + o(At); 

M(A# = B[t, t(t)] At + o(At). 

The e-entropy H, can be calculated exactly for the case 
of the normal distribution in an n-dimensional space or in 
Hilbert space. After a suitable orthogonal coordinate 
transformation, the n-dimensional vector ,$ assumes the 
form 

where the coordinates .& are mutually independent and 
distributed normally. The parameter 0, for given E, is 
determined from the equation 

6’ = C min (0”, D&) 

and in the case of l distributed normally 

The approximating vector 

E’ = ci:, E6, . . . , E:) 

should be chosen such that 

f: = 0 

for D2& 5 0’ and 

‘$2 = t: + 4; D’A, = 0’; D”z$: zzz Oz.& - t? 

(12) 

for D”.& > 0 and the vectors & and A, are mutually 
independent. The infinite-dimensional case is in no way 
different from the finite dimensional. 

Finally, it is very essential that the maximum value of 

t(Q, rl(Q --oo < t < +a. 

Let us denote by ET and fT the segments of the [ and 7 
processes in the time 0 < t 5 T and by {- and v- the flow 
of the f and 11 processes on the negative semiaxis - 00 < 
t < 0. To give the pair (5, TJ) of the stationarily-related f 
and v processes means to give the probability distribution 

7 M. S. Pinsker, Trudy, Third All-Union Math. Conj., vol. 1, p. _^_ ___^ 125; IYSti. 
8 C. E. Shannon and W. Weaver, “The Mathematical Theory 

H,(E) for the vector t (n dimensional or infinite dimensional) 
of Communication,” University of Illinois Press; 1949. 

9 Ibid., sec. 28, p. 79 of the Russian translation. 
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be attained in the normal distribution case for given second 
central moments. This result can be obtained directly or 
from the following proposition of Pinsker.? 

Theorem: Let the positive-definite symmetric matrix 
of the sii, 0 5 i, j 5 m + n quantities and the distribution 
PI of the vector be given 

E = CL, t2, *. * , LJ 

for which the central second moments equal .si,? (for 
0 < i, j 5 m). Let the condition W on the joint distri- 
but’ion P6$, of the vector E and the vector 

9 = &+I, tmc2, *-* , L+n) 

be that the central second moments of t,he quantities 

.$I, t2, . . . , L+, 

equal sii (for 0 < i, j 5 m + n). Then 

H,(t) 5 ; log F. (13) 

The notation in (13) corresponds to the explanation of 
Section II. It is seen from a comparison with the results 
of Section II, that inequality (13) becomes the equality 
in the case of the normal distribution Pg. 

The principles of solving the variational problems 
arising in the calculation of the “rate of creating infor- 
mation” were indicated sufficiently long ago by Shannon. 
Shannon and Weaver’ write: “Unfortunately these formal 
solutions are difficult to evaluate in particular cases and 
seem to be of little value.“’ In substance, however, many 
problems of this kind are simple enough, as is seen from 
the above. It is possible that the slow development of 
investigations in this direction is related to insufficient 
understanding of the fact that the solution of the variation 
problem often appears to be degenerate in typical cases: 
For example, the evaluation of He(~) in the problem 
selected above, for the normally distributed vector 4 in 
the n-dimensional case, the vector E;’ often appears to be 
not n dimensional but only k dimensional with lc < n; 
in the infinite-dimensional case, the vector E’ always 
appears to be finite dimensional. 

V. QUANTITY OF INFORMATION AND RATE OF CREATING 
INFORMATION IN THE STATIONARY PROCESS CASE 

Let us consider two stationary and stationarily-related 
processes, 
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PE,,, invariant to shift along the t axis, in the space of the 
function pair {z(t), y(t) ). If & is fixed, then the following 
conditional probability 

P ,,,,,-K/x-) = Pi&, 7) E c/t- = x-1 

arises from the distribution P,,. Using this distribution, 
the conditional quantity of information 

I&, v/d 

is calculated in conformance with Section II. If the 
mathematical expectation 

is finite for any T > 0, then it is finite for all other T > 0 
and 

MKh dt-1 = Tfk d. 

It is natural to call the quantity f(.$ r]) the “rate of creat- 
ing information of the process q for compliance with the 
process t.” If the process E can be extrapolated with 
complete accuracy to future occurrences, then 

k ?I> = 0. 

In particular, this will be so if the process .$ has a bounded 
spectrum. Generally speaking, the following equality 

k d = 3% 8 (14) 

does not hold. However, under sufficiently broad conditions 
on the “regularity” of the process 5,‘” the equality 

k 11) = % 11) 

holds, where 

_and, theref_ore, when both equalities ?(E, 7) = ?(g, r]) and 
1(~, g) = 1(~, E) are correct, equality (14) holds. Now, 
let W be a certain class of joint distributions P,(, of two 
stationary and stationarily-related processes 5 and E’. 
It is natural to call the equantity 

i;T&$) = inf i(r;‘, ,$) 
P{$‘LW 

the “rate of creating information in the process E under the 
accuracy of reproduction W.” It can be shown that 

SW(t) = ~w(.c) 

where 

N, = inf I(,$, .$‘) 
PEf’CW 

lo Here and later, the regularit,y of the process means, roughly 
speaking, that the segments of the process, corresponding to two 
segments of the t axis sufficiently removed from each other, are 
almost independent. In the case of Gaussian processes, the well- 
known definition of regularity introduced in my work’4 is applicable 
here. 

under certain assumptions on the regularity of the process 
.$ and for certain natural types of conditions W. 

VI. CALCULATION AND ESTIMATION OF THE AMOWT OF 
INFORMATION AND THE RATE OF CRESTING 

INFORMATION IN TERMS OF THE SPECTRUM 

Pinskerll established the formula: 

I&, q) = -& sp log [I - 3(X)] dX (151 m 

where 

I .fdV I2 
r”(X) = f?mf,,(~) 

and .fES, f5,,, f,, are spectral densities; for the case when 
the distribution PC7 is normal and at least one of the pro- 
cesses f or q is regular. In connection with the review by 
Doob,‘2 we would like to note that the novelty, in princi- 
ple, of the Pinsker result is somewhat greater than can be 
expected on the basis of this review. The expression 

ii@ = log &r 4) + 2 s_‘ log f&l) dX (W * 
is known in the case of processes with discrete t’ime t for 
the differential entropy of a normal process per unit time: 

However, no analog of the expression h(E) exists in the 
continuous time and unbounded spectrum case and the 
Pinsker formula requires independent derivation. 

It is natural to characterize the accuracy of reproducing 
the stationary process E, using the stationary process t’ 
stationarily related to .$, by the quantity 

c2 = M[~(a) - t’(o!)]” 

and in the case of a W condition of the form 

it is natural to call the quantity 

at1 = Hw@) 

the t entropy per unit time of the process .$ and under the 
assumption that 

the rate of creating information in the process 4 for average 
accuracy of transmission e. It can be concluded from the 
appropriate statement for finite-dimensional distributions - 
(see Section IV) that the quantity He(t) attains a maxi- 
mum in the case of the normal process .$ for a given spectral 
density f&>. In the normal case, H,(f) can be calculated 
easily in terms of the spectral density exactly as was 
explained in Section IV applied to H,(e) for the n-di- 

I1 M. S. Pinsker, Doklady, AN USSR, vol. 98, 213-216; 1954. 
l2 J. L. Doob, Math. Revs., vol. 16, p. 495; 1955. 
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mensional distribution. The parameter 0 is determined 
from the equation 

s 

m 
e2 = min [e”, fEE( dX. (17) -m 

Using this parameter, the quantity H,(t) is found from 
the formula 

Spectral densities of the kind shown in Fig. 1 which 
are approximated well by the function: 

cpm = 1 a2 for A 5 1 X j 5 A + W 
, 

10 in the remaining cases 

are of practical interest. It is easy to calculat,e that 
2 

#  N __ 

26w 
(19) 

ml 
2Wa2 

- w log 2 E 

approximately, in this case for not too small E for a normal 
process. 

Fig. 1 

Certainly, (19) is none other than the well-known 
Shannon formula 

Here, however, the novelty, in principle, is that now we 
see why and within what limits (for not too small E) this 
formula can be used for a process with an unbounded 
spectrum and such are all the processes in the theory of 
information transmission which really interest us. 

Writing (19) thus 

a.9 - 2W log (ad2W) log ‘, (21) 

and comparing with- (9), we see that the double width 2W 
of the useful frequency band plays the role of the number 
of measurements. This idea of the equivalence of twice 
the frequency bandwidth to the number of measurements, 
occurring in a certain sense of the word, per unit time, 
was apparently first expressed by Kotel’nikov.‘3 On the 
basis of this idea, Kotel’nikov indicated the fact that a 
function, for which the spectrum is limited to bandwidth 
2W, is determined uniquely by the values of the function 
at the points 

2 . . . -~ 9 2w ’ -$ , 0, $ ) & ) . . * ) $ ) . . . . 

Shannon retained this argumentation, using the repre- 
sentation obtained in this manner to derive (20). Since a 
function with a bounded spectrum is always singular in 
the sense of my workI and the observation of such a 
function is not related, generally, to the stationary flow 
of new information, then the sense of this kind of argumen- 
tation does not remain completely clear so that the new 
derivation of the approximate formula (al), cited here, 
seems to me to be not devoid of interest. 

The growth of H,(l) as E decreases occurs, for small E 
for any normally distributed regular random function, 
substantially more rapidly than would be obtained ac- 
cording to (21). In particular, if .fEc(X) has order l/Xp as 
X -+ 00, then h,(E) has order l/(2/.@ - 1)). 

13 V. A. Kotel’nikov, Material for the First All-Union Conf. on 

R = Wlog;. 
a. 

questions of communications; 1933. 
(20) I4 A. N. Kolmogorov, Bulletin, Moscow Univ. I, no. 6; 1941. 

English translation available. 


