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Abstract12

Sea surface temperature (SST) observations made at ships are distributed irregularly in13

space and time and are affected by systematic biases and random errors. Such observa-14

tions are often “binned”: split into samples, contained within “bins” – grid boxes of a15

space-time grid (1◦×1◦ monthly bins are used here), and their statistics are computed.16

Bin averages often serve as gridded representations of such data, thus requiring reliable17

uncertainty estimates, which for ship observations are particularly important because18

of their domination in the early observational records. Here ship SST observations for19

1992–2010 are compared with an independent high-resolution satellite-based SST data20

set. To remove systematic biases, seasonal means were subtracted from the difference21

between bin-averaged data sets. In more than 66%(50%) of locations with binned tem-22

poral coverage exceeding 50%(66%), the magnitude of remaining anomalies agreed within23

20%(10%) with random error model estimates. Separate estimates for sampling and mea-24

surement error components were obtained.25

Plain Language Summary26

Sea surface temperature (SST) is an important climate variable. SST observations27

made at ships are distributed irregularly in space and time and are affected both by sys-28

tematic biases and randomly-varying measurement errors. To make them easier to use,29

such data sets are often “binned”, i.e., split into samples contained within “bins”, which30

usually are grid boxes of some space-time grid (monthly 1◦ longitude by 1◦ latitude bins31

are used here), and the statistics of these binned samples are computed. Bin averages32

often serve as gridded representations for data sets of ship observations; hence their un-33

certainty estimates have to be reliable. This is especially important since ship observa-34

tions dominate early on in the historical observational record. Ship SST observations for35

1992–2010 are compared here with an independent high-resolution satellite-based SST36

data set. To remove systematic biases, seasonal means were subtracted from the differ-37

ence between bin-averaged versions of these data sets, and the remainder was interpreted38

as a sum of random errors. Uncertinty estimates for bin averages obtained under these39

assumptions translated into the estimated remainder’s magnitude that was within 20%40

of its actual magnitude at 67% of all locations where the temporal coverage for ship data41

exceeded 50%. Furthermore, the estimates were within 10% of the actual values at 50%42

of locations with ship coverage exceeding 67%. Uncertainty components due to incom-43

plete sampling and due to the measurement error were estimated as well.44

1 Introduction45

Sea surface temperature (SST) is one of the “essential” climate variables (Bojinski46

et al., 2014), particularly well-suited for monitoring changes in the Earth’s mean surface47

temperature and very visible in the climate change debate (Hartmann et al., 2013). More48

than two centuries of SST observations together with other in situ data for surface ocean49

are assembled in the International Comprehensive Ocean-Atmosphere Data Set (ICOADS,50

Woodruff et al., 1987; Freeman et al., 2017). These observations are irregularly distributed51

in space and time. A typical preparatory step for their use in climate studies is “binning,”52

i.e., splitting them into subsamples, contained in non-overlapping spatiotemporal “bins”,53

usually grid boxes of a regular space-time grid, and reporting statistical summaries of54

each bin’s sample, e.g., number of observations No in the bin, their sample mean Mo,55

standard deviation (SD) So, etc. By construction, each of these statistics forms a grid-56

ded field, albeit usually incomplete. In lieu of averages over the complete bin’s volume,57

which are generally unavailable, bin means Mo (a.k.a. “super-observations”: T. M. Smith58

& Reynolds, 2005; Kennedy, 2014) are often used as input data for objective analyses59

or data assimilation; hence having reliable uncertainty estimates for binned data aver-60
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ages is important. For ship data this importance is especially high because of ships’ dom-61

inance, as an observational platform, in the early part of historical data record.62

If binned observations could be viewed as independent and identically distributed63

(i.i.d.) random variables with mean θ, equal to the true SST average over the full vol-64

ume of the bin, and variance σ2
Bo, equal to the full intra-bin variance of SST observa-65

tions, then, obviously, we would have66

EMo = θ, ES2
o = σ2

Bo , (1)67

with the error variance of the bin mean Mo being68

e2
Mo

def
= E (Mo − θ)2

= σ2
Bo/No . (2)69

Hereinafter label “def” above the “=” sign introduces its left-hand side expression as70

a notation for its right-hand side, and E denotes mathematical expectation. The intra-71

bin variance σ2
Bo of SST observations is caused both by physical variations of the true72

SST throughout the bin’s volume and by errors in SST measurements; the contributions73

from both these effects will be quantified in the analysis presented here.74

Under the assumption that σ2
Bo depends on the bin’s location, but is not chang-75

ing in time, it can be estimated by averaging S2
o statistics for that location over some76

period of relatively good data sampling. Using this approach, error estimates computed77

by (2) were introduced by Kaplan et al. (1997) and used for objective analyses of his-78

torical SST observations by Kaplan et al. (1998), Ilin and Kaplan (2009), and, with fur-79

ther modifications to σ2
Bo estimate, by Karspeck et al. (2012). The usefulness of their80

analyzed fields and uncertainty estimates provides some indirect justification for such81

uses of formula (2).82

However, a direct comparison of error estimates based on (2) with the actual RMS83

differences between bin means for ICOADS and for satellite SST data, while showing gen-84

eral large-scale agreement between global patterns of error magnitude, had many regional85

and smaller-scale differences (Rayner et al., 2010, cf. their Figures 1e vs. 1f). The rea-86

sons were many for this lack of detailed agreement: a likely failure of the i.i.d. assump-87

tion for bin samples that included SST observations from different platform types, e.g.,88

ships, moorings, drifting buoys; which were obtained by different methods of SST ob-89

servation; and which were affected by a multitude of systematic biases, thought to be90

associated with individual methods of observations, with specific types of observing plat-91

forms, and even with individual platforms, like persistent thermometer biases on some92

ships. Furthermore, the interpretation of that comparison was complicated by the de-93

pendence of the satellite-based SST data set (due to the commonly used satellite SST94

calibration procedures) on the in situ observations themselves.95

A high-resolution interpolated SST analysis product on a daily 0.05◦×0.05◦ grid,96

based on the satellite data, independent of the concurrent in situ SST observations, and97

accompanied by verified uncertainty estimates, had become available several years ago98

(Merchant et al., 2014). Here it is used in the error analysis of the monthly 1◦×1◦ bin99

means of the ship-only subset of ICOADS SST observations. The actual RMS differences100

for the 1992-2010 period between bin-averaged SST from ships and from this satellite-101

based analysis are compared with estimates based on a version of model (2) for random102

errors in ship observations, combined with a simple climatological model for their biases,103

and accounting for the analysis uncertainty, using analysis error estimates supplied by104

Merchant et al. (2014) with their satellite SST analysis product. While the bias struc-105

ture of ship SST observations is in reality quite complicated and remains a subject of106

active research (Kent et al., 2017; Huang et al., 2018; Chan et al., 2019; Kent & Kennedy,107

2021), an admittedly simplistic approximation of biases in bin-averaged ship SST data108

by its seasonally-dependent component is used here. The goal of this study is to show109

that once the climatological average is removed from the difference between ship and110
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satellite bin means, the residual anomaly can be treated, to a significant extent, as a com-111

bination of random errors despite the well-known limitations of the i.i.d. assumption.112

The multitude and space-time irregularity that characterize, beyond their seasonal de-113

pendence, the distributions of measurement method and ship-specific biases, combined114

with the relatively small (1◦) spatial size of bins used here that are unlikely to contain115

successive measurements from the same moving ship, make the model, based on Eqs. (1),(2)116

useful for describing the variance of random error in bin means of ship SST observations.117

An additional advantage of the proposed approach, utilizing a high resolution SST anal-118

ysis, is the development of separate estimates for sampling and measurement error com-119

ponents of bin-averaged ship SST data.120

Section 2 describes the data sets used and their pre-processing for this study. Sec-121

tion 3 presents error models, constructs error estimates, and describes the technique of122

their comparison with the RMS of the actual difference anomaly between bin-averaged123

versions of ICOADS ship SST observations and the satellite data analysis product. Sec-124

tion 4 presents the results, which are discussed, together with their caveats, in section 5.125

Conclusions are given in section 6.126

2 Data127

2.1 High-resolution satellite SST analysis product128

High-resolution globally-complete satellite SST data set, independent of the in situ129

data (Merchant et al., 2014) that was produced within the Climate Change Initiative (CCI)130

of the European Space Agency (ESA), is used here. It is based on the consistent re-processing131

of major global streams of the infrared satellite SST data, namely, the data from (Ad-132

vanced) Along-Track Scanning Radiometer and from the Advanced Very High Resolu-133

tion Radiometer missions, with the deliberate avoidance of product dependency on the134

concurrent in situ SST observations (coefficients in SST retrievals were computed by op-135

timal estimation, based on the atmospheric radiative transfer simulations, rather than136

by bestfitting in situ SST observations). In addition to the more traditional “skin” SST,137

the time-adjusted temperature at 20 cm depth was also produced, by modeling the near-138

surface thermally-stratified ocean layer. These temperature values with their uncertainty139

estimates were fed into the optimal interpolation system for the U.K. Met Office Ocean140

Sea Surface Temperature and Sea Ice Analysis (OSTIA, Donlon et al., 2012; Roberts-141

Jones et al., 2012, 2016), producing globally-complete ocean temperature fields at 20 cm142

depth, 0.05◦≈6 km spatial resolution and 09/1991–12/2010 period, interpretable as local-143

time daily averages, with their uncertainties represented by error SD for 09/1991–12/2010.144

This product, known as ESA SST CCI Analysis, version 1.0, is referred to hereinafter145

as “CCI Analysis” or simply “CCI.” The period of complete 19 years (1992–2010) and146

75◦S–75◦N global ocean domain is used.147

2.2 Ship Observations of SST148

Ship observations of SST in ICOADS (Release 3.0; Freeman et al., 2017) were iden-149

tified by the “Platform Type” indicator value (PT=5), corresponding to the “ship” ob-150

servational platform type, and put through the ICOADS own quality control (QC) sys-151

tem with the QC flag settings intended for the creation of so called “enhanced Monthly152

Summary Groups” that trims off all observations outside of the 4.5 SD range from the153

ICOADS historical climatology (unless they are made in the area with no historical cli-154

matology available) and excludes duplicate reports as well as those from the landlocked155

locations and those whose observation time conflicts with the time range of their ICOADS156

data source (see S. R. Smith et al., 2016; Freeman et al., 2017, for more information).157

For each ship SST observation o that passed QC, its local time and date were computed158

and included into its record for further use in this study (only Coordinated Universal159

Time and date are in the ICOADS own data format). Then for each ship observation160
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o the CCI Analysis “match-up” SST value ao (i.e., the CCI SST for the daily 0.05◦×0.05◦161

grid box within whose time-space limits ship observation o was taken) and its estimated162

error SD eao were identified and added to the record for o.163

For the 1992-2010 period, ICOADS R3.0 contains around 23 million ship SST ob-164

servations in the latitudinal range 75◦S–75◦N that pass the QC procedure described above.165

Among these observations, 3.2% do not have the CCI Analysis match-up values, being166

made in locations that are too close to the land to be included in the CCI Analysis do-167

main. As Figure S1 illustrates, these are coastal, island, and lake observations. Such ob-168

servations (lacking CCI match-ups) were excluded from this study.169

2.3 Data Preparation170

Consider bin B, representing a grid box of a regular monthly 1◦×1◦ grid, and a sam-171

ple Bo of No SST observations from ships that were taken within its space and time lim-172

its and successfully passed ICOADS QC:173

Bo
def
= {o1, o2, · · · , oNo} .174

This “binned” sample is characterized by its mean Mo and SD So, as follows:175

Mo
def
=

1

No

No∑
i=1

oi , S2
o

def
=

1

No−1

No∑
i=1

(oi−Mo)
2
. (3)176

Note that So in (3) corresponds to the unbiased variance estimate S2
o and can only be177

computed if No>1. Therefore bins with only one ship observation (No=1) form a spe-178

cial class of data samples: their means, but not variability can be estimated directly from179

their data. Dealing with this more complicated subset is left for further investigaton, and180

only bins with No≥2 are considered in this study.181

Now consider a set Ba of Na SST values from the CCI Analysis for all daily 0.05◦×0.05◦182

grid boxes contained within that same bin B as above:183

Ba
def
= {a1, a2, · · · , aNa

} .184

Statistics Ma and Sa are computed as follows:185

Ma
def
=

1

Na

Na∑
j=1

aj , S2
a

def
=

1

Na

Na∑
j=1

(aj−Ma)
2
. (4)186

Since these represent the spatiotemporal mean and SD of the CCI Analysis SST within187

the bin B calculated from the complete set of the CCI Analysis grids covering bin B, for-188

mula (4) for S2
a has Na, rather than Na−1 in denominator. Unless the land or ice cover189

are present within the bin B, the number of data points in Ba is quite large: typically,190

Na∼20×20×30�No for ocean locations.191

Recall that for each oi ∈ Bo, its CCI SST match-up aoi has been identified and192

stored in the record for oi (Section 2.2). Therefore it is easy to assemble a sample of CCI193

Analysis match-ups to ship observations in Bo:194

Bao
def
= {ao1, ao2, · · · , aoNo

}195

and to compute its statistics Mao and Sao analogously to (3). Additionally, differences196

between ship observations and their CCI Analysis SST match-ups197

di
def
= oi−aoi , i = 1, · · · ,No (5)198

are binned as well, resulting in the sample199

Bd
def
= {d1, d2, · · · , dNo}200
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and its bin statistics Md and Sd.201

It will prove useful to have bin statistics for CCI Analysis uncertainties pre-computed202

as well. These are calculated in exactly the same way as was done above for correspond-203

ing SST values. Specifically, let204

Bea
def
= {ea1 , ea2 , · · · , eaNa

},205

where each eaj is the error SD for the CCI Analysis SST value aj ∈ Ba and compute206

Mea, Sea analogously to (4). For the sample of the CCI Analysis uncertainty value match-207

ups to the ship observations in B208

Beao
def
= {eao1 , eao2 , · · · , eaoNo

},209

where each eaoi is the error SD for the CCI Analysis SST value aoi ∈ Bao and compute210

Meao, Seao analogously to (3).211

Calculations described above were performed to obtain Mx and Sx statistics with212

x = o, ao, d, or eao for all monthly 1◦×1◦ bins with No ≥2, while Mx and Sx with213

x = a, ea were calculated for all monthly 1◦×1◦ bins that contain any CCI Analysis grid214

points, included into the ocean domain (such bins de facto have Na ≥ 28.) Temporal215

attribution of bin statistics Mx(y,m), Sx(y,m), as well as No(y,m), Na(y,m) is done216

using climatological (calendar) month m = 1, · · · , 12 (January–December) and year y =217

1992, · · · , 2010 . For any given location, statistics Mx(y,m), Sx(y,m) for x = o, ao,218

d, and eao are only available when No≥2 and are missing when No≤ 1. To define rig-219

orously the temporal averaging of available values for such statistics, for a given bin lo-220

cation and a given climatological month m, introduce a subset of years for which such221

statistical summaries of ship data are available:222

Υm
def
=
{
y ∈ {1992, · · · , 2010} | No(m, y)≥ 2

}
,223

and let224

Ym
def
=
∣∣Υm

∣∣225

be the number of elements in Υm, i.e., number of years with available summaries for the226

given location and climatological month m. Further, let227

M
def
=
{
m ∈ {1, · · · , 12} | Ym > 0

}
228

be a set of climatological months for which bin summaries are available at least in one229

year in this location, with230

M
def
=
∣∣M∣∣231

being a number of such months.232

With these definitions, for example, the differences between available bin averages233

of ship SST Mo and corresponding bin averages from CCI Analysis Ma234

dM(y,m)
def
= Mo(y,m)−Ma(y,m) , y ∈ Υm , m ∈M (6)235

constitute a timeseries of length236

N
def
=

∑
m∈M

Ym , (7)237

and their RMS is calculated as238

D def
=

 1

N

∑
m∈M

∑
y∈Υm

dM(y,m)2

1/2

. (8)239

240
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3 Methods241

3.1 Models and assumptions242

CCI Analysis values aj are estimates of water temperature at 20 cm depth, aver-243

aged over daily 0.05◦×0.05◦ grid boxes. Corresponding “true” values taj are averages of244

true water temperature t at 20 cm depth over such grid boxes, so for values within bin245

B246

taj = aj + εaj , j = 1, · · · ,Na ; (9)247

Eεaj = 0 , E
(
εaj
)2

=
(
eaj
)2
, j = 1, · · · ,Na , (10)248

where εaj are the CCI analysis errors. These are assumed uncorrelated with the analyzed249

values aj , since the CCI Analysis is a form of optimal interpolation (OI) that like other250

Best Linear Unbiased Estimates (BLUE), e.g., multivariate linear regression (Section 8.4.2251

in Von Storch & Zwiers, 2001), produces estimates that are independent of their errors.252

Specifically for the BLUE produced by kriging (of which OI is a special case called “sim-253

ple kriging”) see section 1.5 in the book by Stein (1999). While variances of analysis er-254

rors for different 0.05◦×0.05◦ daily grid boxes can be assumed equal to squares of their255

SD estimates eaj , supplied by Merchant et al. (2014), additional assumptions are needed256

for their cross-covariances. These do not vanish, since the analysis errors are not mu-257

tually independent, especially for grid boxes that are not greatly separated in time and258

space. CCI Analysis uses the increased range (20–350 km) of spatial decorrelation scales259

of background error that resulted in improved feature resolution (Roberts-Jones et al.,260

2016), hence the analysis error is likely dominated by spatial scales larger than 1◦×1◦261

. Since the OSTIA background solution uses day-to-day persistence and relaxes to ref-262

erence climatology with the 30 day decorrelation time scale (Donlon et al., 2012), a near-263

perfect correlation of the analysis error within monthly 1◦×1◦ bins is assumed here:264

E
(
εaj ε

a
k

)
≈ eajeak , j, k = 1, · · · ,Na . (11)265

For conceptual simplicity, the same “truth” definition, as for the CCI Analysis (9),266

is used for ship observations as well:267

oi = taoi + b+ εoi , i = 1, · · · ,No , (12)268

where taoi is true 20 cm depth temperature averaged over the daily 0.05◦×0.05◦ grid box269

containing ship observation oi, bias b is assumed constant within each 1◦×1◦ monthly270

bin, thus it does not depend on i in (12). Measurement errors εoi are assumed indepen-271

dent of true temperature variations taoi and i.i.d. within each bin, with272

Eεoi = 0, E (εoi )
2

= σ2
o, i = 1, · · · ,No , (13)273

where σ2
o is an (unknown) measurement error variance. Note that because of our def-274

inition of true temperature as tao, its differences to − tao with precise water tempera-275

ture to at the time, location, and depth of ship measurement effectively becomes a part276

of measurement error εo, and will contribute to its statistics, estimated in this study.277

Now consider a set of the true SST values for the CCI Analysis grid points within278

the bin B:279

Bta
def
= {ta1 , ta2 , · · · , taNa

}.280

Its statistics Mta and S2
ta, calculated analogously to (4) represent, by construction, the281

true SST average θ and the space-time variance υ2 within the bin B:282

θ
def
= Mta , υ2 def

= S2
ta , (14)283
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Another important assumption is that times and locations of ship observations are284

random and uniformly distributed over the bin’s volume. Hence the true SST match-285

ups to them form a set of No equiprobable draws286

Btao
def
= {tao1 , tao2 , · · · , taoNo}287

from the full set Bta of the true SST values in the bin. Based on statistical theorems that288

lay the foundation of the classical Monte Carlo method for evaluating definite integrals289

(e.g., Section 3.2 of Robert & Casella, 2004), sample mean Mtao and variance S2
tao of290

this set of random draws Btaocalculated analogously to formulas (3), are unbiased esti-291

mates of the true mean and variance of the bin292

EMtao = θ , ES2
tao = υ2 , (15)293

and the error of sample mean, a.k.a. sampling error,294

εs
def
= Mtao − θ295

has variance296

Eε2
s = υ2/No (16)297

(for detailed derivation see Section 2.10 of Cochran, 1997).298

3.2 Single bin statistics299

3.2.1 CCI Analysis samples300

Averaging equations (9) over j and using (14), obtain301

θ =Ma +Mεa, (17)302

where Mεa is the CCI Analysis error, averaged over the bin. Based on (10) and (11),303

EMεa = 0,304

e2
Ma

def
= EM2

εa =
1

N 2
a

Na∑
j,k=1

E
(
εaj ε

a
k

)
≈ 1

N 2
a

Na∑
j,k=1

eaj e
a
k =

1

N 2
a

Na∑
j=1

eaj

2=M2
ea. (18)305

Subtracting (17) from (9), averaging squares of both sides over j, obtain306

S2
ta = S2

a +
1

Na

Na∑
j=1

(aj −Ma)
(
εaj −Mεa

)
+ S2

εa . (19)307

Due to the assumption of independence between aj and εaj terms in (9), the cross-terms308

under summation in the right-hand side of (19) drop out. Therefore, using(14), find for309

the mathematical expectation of both sides310

υ2 = ES2
a + ES2

εa , (20)311

where S2
εa is the space-time variance of the CCI analysis error within the bin B, defined312

analogusly to (4). Using (10), (11), and (18), derive313

ES2
εa =

1

Na

Na∑
i=1

E(εai )2 − EM2
εa ≈

1

Na

Na∑
i=1

(eai )2 −M2
ea = S2

ea , (21)314

i.e., due to the assumption (11) of the near-perfect correlation of the CCI analysis er-315

rors within a bin, their intra-bin variance is approximated by the intra-bin sample vari-316

ance S2
ea of the analysis error estimates eai ; the latter variance is generally quite small:317
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it is different from zero only when the analysis error estimates eai vary within the bin.318

Substituting (21) into (20), find that319

υ2 ≈ ES2
a + S2

ea , (22)320

and therefore321

υ̂2 def
= S2

a + S2
ea , (23)322

is an approximately unbiased estimator of υ2.323

Equations (20) and (22) make it clear that under the assumptions made here the324

expected space-time variance ES2
a of the CCI analysis within the bin B has to be smaller325

than such variance υ2 of the true SST field. Moreover, it is the expected variance ES2
εa326

of the analysis error that makes up for the variance portion “lost”by the analysis field.327

To make this especially clear, recall that the outcome of a typical objective analysis, in328

the Bayesian interpretation, is a claim that the posterior distribution of the target field329

has its mean and covariance being equal to the analyzed field and to the analysis’ error330

covariance, respectively (Lorenc, 1986; Handcock & Stein, 1993; Stein, 1999, sections 1.2,1.5).331

Arranging elements of sets Bta , Ba, and Bea as vector-columns of dimension Na332

ta = (ta1 , t
a
2 , · · · , taNa

)T , a = (a1, a2, · · · , aNa)T , ea = (ea1 , e
a
2 , · · · , eaNa

)T ,333

where the superscript T denotes matrix transposition, the results of the CCI analysis,334

constrained to the bin B, can be stated as335

Eta = a , E(ta − a)(ta − a)T = eae
T
a . (24)336

If the normality assumption is made as well, the entire posterior distribution for the vec-337

tor ta is known:338

ta ∼ N(a, eae
T
a ).339

Here N(∗, ∗) denotes a multivariate normal distribution with the arguments specifying340

its mean vector and covariance matrix. But even without the normality assumption, it341

follows from (24) that342

Etat
T
a = EaaT + eae

T
a , (25)343

since344

E(ta − a)(ta − a)T = Etat
T
a − EaaT .345

Equation (22) can be easily re-derived from (25). By multiplying matrices in both sides346

of (25) by the I−11T /Na, where I and 1 are respectively Na×Na identity matrix and347

Na × 1 vector with all components equal one, obtain348

E(ta −Mta1)(ta −Mta1)T = E(a−Ma1)(a−Ma1)T + (ea −Mea1)(ea −Mea1)T .349

Averaging diagonal elements of the matrices in both sides of this equation indeed pro-350

duces equation (22).351

Restating equations (9) for ao ∈ Bao, i.e., the CCI analysis match-ups to ship ob-352

servations o ∈ Bo, obtain353

taoi = aoi + εaoi , i = 1, · · · ,No , (26)354

and analogously to the derivation of (23), find, using (15), that355

υ̂2
o = S2

ao + S2
eao , (27)356

is another approximately unbiased estimator of υ2. Unlike the estimate υ̂ that is given357

by (23) and is based on the full set Ba of Na CCI Analysis points within the bin B, the358

estimate υ̂o is based on the much smaller subset Bao of No CCI Analysis match-ups to359

ship observationsin Bo.360
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(a) % of monthly 1◦×1◦ SST bins with No≥2, 47.8% (b) RMS D̃ of ship–satellite difference dM, 0.99◦C
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(c) Zonal means of SST differences dM,◦C, between bin-averaged ship observations and CCI Analysis
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Figure 1. Comparison of monthly 1◦×1◦ bin-averaged (No≥2) ICOADS ship SST obsera-

tions with the ESA CCI Analysis for 1992-2010: (a) Percentage of ICOADS ship SST bins with

No≥2 among all bins with data (No≥1); (b) RMS D̃, ◦C, of difference dM between bin-averaged

ship and satellite data; (c) Zonal averages of differences dM, ◦C; (d) DOF in anomalies of bin-

averaged ship data (zero DOF grids are shown as missing data, in white); (e) RMS D̃′, ◦C, of

ship–satellite difference anomalies dM-b̂c; (f) Estimate E , ◦C, of ship–satellite difference anomaly

RMS D̃′; (g) Relative difference ρ̃, %, between D̃′ and E . Numbers at the end of panel labels are:

for (a),(d) – global averages of displayed fields; for (b),(e),(f),(g) – global RMS of displayed fields.

3.2.2 Ship observations sample361

Averaging both sides of (12) over i, obtain362

Mo =Mtao + b+Mεo, (28)363

where Mεo is the bin mean of measurement errors with, based on (13),364

EM2
εo = σ2

o/No . (29)365

Subtracting (28) from equations (12), then summing up over i squares of both sides of366

the obtained equations and dividing the results by No − 1, find for the mathematical367

expectation of both sides368

σ2
Bo

def
= ES2

o = ES2
tao + ES2

εo, (30)369

and defining the intra-bin variance of ocean observations σ2
Bo as the left-hand side of this370

equation. Using (13) and (29), derive371

ES2
εo =

1

No − 1

[ No∑
i=1

E(εoi )
2 −NoEM2

εo

]
=

1

No − 1

[
Noσ2

o −Noσ2
o/No

]
= σ2

o. (31)372

Inserting (15) and (31) into the right-hand side of (30), obtain373

σ2
Bo = υ2 + σ2

o. (32)374

Equation (32) presents the intra-bin variance of ship SST observations as a sum of two375

terms: the spatiotemporal variance υ2 of true SST within the bin and the variance σ2
o376

of the SST measurement error on ships.377

3.2.3 Matched-up differences378

Inserting taoi from (26) into (12) and recalling (5) definition for matched-up differ-379

ences di, obtain380

di = b+ εoi + εaoi , i = 1, · · · ,No . (33)381

By taking sample variances of both sides of (33) and considering their expectations, find382

ES2
d = σ2

o + ES2
εao , (34)383

therefore presenting the expected variance of matched-up differences as a sum of two terms,384

namely the variance of SST measurement error on ships σ2
o and the expected error vari-385

ance of the CCI analysis match-ups ES2
εao in the bin. The latter is approximated as386

ES2
εao ≈ S2

eao , (35)387

based on a derivation similar to (21). From equations (34) and (21), an approximately388

unbiased estimate of ship SST measurement error σ2
o is obtained:389

σ̂2
o = S2

d − S2
eao . (36)390
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Note that due to the assumption (11), the analysis error variance term S2
eao in (36), as391

well as in (27), is relatively small, being different from zero only when error estimates392

eaoi for the CCI analysis match-ups vary within the bin.393

3.2.4 Bin mean differences394

For differences between bin-averaged ship observations and CCI Analysis, defined395

by (6):396

dM = b+ εdM , (37)397

where398

εdM
def
= εs +Mεo +Mεa ,399

and based on (16), (18), (29), and (32),400

EεdM = 0 , e2
dM

def
= Eε2

dM = σ2
Bo/No +M2

ea . (38)401

3.3 Statistics for a temporal sample of bins402

3.3.1 Actual RMS differences403

Consider a temporal sample of bin statistics for a certain location of the bin. Due404

to (37), straight RMS D of differences dM(y,m), calculated by (8), is affected by bias405

b. Bias estimate b̂c(m) is obtained by climatological averaging of dM(y,m) over years406

y ∈ Υm with available bin summary statistics:407

b̂c(m) =
1

Ym

∑
y∈Υm

dM(y,m) , m ∈M . (39)408

The RMS of the differences dM with the estimated bias removed, taking into account409

the reduction in the number of degrees of freedom (DOF) from (7) to410 ∑
m∈M

(Ym−1) = N−M ,411

becomes412

D′ =

 1

N−M
∑
m∈M

∑
y∈Υm

(
dM(y,m)− b̂c(m)

)21/2

. (40)413

3.3.2 Estimated RMS differences and errors414

Based on (37) and (39),415

ED′ 2 =
1

N−M
E

 ∑
m∈M

∑
y∈Υm

εdM(y,m)− 1

Ym

∑
y∈Υm

εdM(y,m)

2
 =416

=
1

N−M
∑
m∈M

E
∑
y∈Υm

εdM(y,m)2 − 1

Ym
E

 ∑
y∈Υm

εdM(y,m)

2
 =417

=
∑
m∈M

µm
Ym

∑
y∈Υm

edM(y,m)2 ,418

where419

µm
def
= (Ym − 1)/(N−M) , m ∈M . (41)420

is the portion of the total DOF due to each climatological month m ∈M. Note that421 ∑
m∈M

µm = 1.422
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Based on (38),423

edM(y,m)2 = σBo(m)2/No(y,m) +Mea(y,m)2
424

and425

ED′ 2 =

M∑
m=1

µmσBo(m)2/N h
o (m) +

M∑
m=1

µmMq
ea(m)2 , (42)426

where427

N h
o (m)

def
=

 1

Ym

∑
y∈Υm

No(y,m)
−1

−1

, Mq
ea(m)

def
=

 1

Ym

∑
y∈Υm

Mea(y,m)2

1/2

.428

are harmonic N h
o (m) and quadratic Mea(m) means of No and Mea, respectively, over429

available years y ∈ Υm for a climatological month m ∈M.430

An estimate of σBo(m)2 is computed as pooled variance (Section 9.2.16 in Von Storch431

& Zwiers, 2001) of binned samples over all available years y ∈ Υm for each climatolog-432

ical month m ∈M:433

σ̂Bo(m)2 def
=

∑
y∈Υm

ϕ(y,m)So(y,m)2, m ∈M, (43)434

where weighting coefficients are435

ϕ(y,m)
def
= [No(y,m)− 1] /Φ(m), y ∈ Υm, m ∈M , (44)436

with437

Φ(m)
def
=

∑
y∈Υm

[No(y,m)− 1] , m ∈M . (45)438

being the total number of degrees of freedom used in (43) for the pooled estimate σ̂Bo(m)2.439

Substituting estimate σ̂Bo(m)2 from (43) for the value of σBo(m)2 in (42), obtain440

an unbiased estimate for D′ 2:441

E2 def
= E2

Mo + E2
Ma , (46)442

where the terms in the right-hand side are estimates of error variances in bin averages443

of ship observations444

E2
Mo

def
=

∑
m∈M

µmσ̂Bo(m)2/N h
o (m) (47)445

and of the CCI Analysis446

E2
Ma

def
=

∑
m∈M

µmMq
ea(m)2 . (48)447

3.3.3 Bias correction of SD and RMS estimates448

While S2
o given by Equation (3) represents an unbiased estimate of the population449

variance, its square root So is a biased estimate of the population SD. For an i.i.d. ran-450

dom sample from a normal distribution, its unbiased variance estimate is proportional451

to a random value from the χ2(f) distribution, where f is a number of DOF used in the452

variance estimate. Based on the properties of the χ2(f) distribution, to obtain an un-453

biased estimate of SD, the square root of the estimated variance has to be multiplied by454

the correction factor (Holtzman, 1950)455

c(f) =

√
f

2
Γ
(
f

2

)/
Γ
(
f + 1

2

)
, (49)456

where Γ denotes the gamma function. For example, for the bin sample with the unbi-457

ased variance estimate S2
o given by Equation (3), the unbiased estimate of SD will be458

S̃o = c (No−1) So . (50)459
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Observed frequency of |ρ̃| as a function of DOF in
anomalies of bin-averaged ship SST observations
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Figure 2. Observed frequency, a.k.a empirical probability, of |ρ̃| (color) calculated for 10%-

wide segments of 0–100% interval (vertical axis) for each of 12-wide sub-ranges of the complete

1–216 range of the possible DOF in the climatological anomaly sample for 1992-2010 (horizontal

axis). White lines are contours of cumulative empirical probability of |ρ̃|, conditional on the given

DOF range, corresponding to the values of 0.5, 0.67, 0.95, and 0.99, as labels indicate.

Note that c(f) is a monotonically decreasing function of real f > 0, and c(f) → 1 as460

f→∞. Naturally, the largest corrections c(f) are required for the smallest DOF num-461

bers f : c(f)≈1.25, 1.13, 1.09, 1.06, 1.05 when f=1, 2, 3, 4, 5, respectively, and 1<c(f)<462

1.01 when f exceeds 25. The function c(f) is illustrated by a graph in Figure S2.463

When samples for the same calendar month m in different years are pooled together464

to produce a joint variance estimate σ̂Bo(m)2, as given by (43), their DOF numbers add465

up to Φ(m), the total number of DOFs in the pooled sample, given by (45). Therefore466

the unbiased estimate of the intra-bin SD can be obtained by467

σ̃Bo(m) = c (Φ(m)) σ̂Bo(m). (51)468

Since Φ(m) is a sum over all available years y ∈ Υm of the DOF numbers No(y,m)−469

1 in binned variance estimates for the given location and month m, the argument of func-470

tion c in Equation (51) is generally much larger than its argument in Equation (50) for471

the unbiased SD estimate from individual bin samples, thus signifying that a smaller cor-472

rection is required for producing an unbiased estimate of σBo(m).473

When σ̂Bo(m)2 estimates are averaged over all available calendar months m ∈M474

as is done in (47) to estimate the error variance in bin averages of ship obsevations, the475

total DOF number in this calculation becomes476

Φ =
∑
m∈M

Φ(m). (52)477
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However, when M = |M| > 1, unless the coefficients µm/N h
o (m) multiplying individ-478

ual σ̂Bo(m)2 estimates happen to be proportional to Φ(m), the sum in the right-hand479

side of (47) will not obey the χ2(Φ) distribution. Therefore the correction factor c(Φ)480

is not be applicable in this case, as being too small; a factor c(f), corresponding to a cer-481

tain DOF number f , lying in the interval482

min
m∈M

Φ(m) < f < Φ483

would be necessary for the precise correction.484

Analogously to the corrections introduced above, RMS estimates of ship – satel-485

lite differences D and difference anomalies D′, given by formulas (8) and (40), respec-486

tively, also need corrections to become unbiased estimates:487

D̃ = c(N)D , D̃′ = c(N−M)D′ . (53)488

4 Results489

Excluded from this study monthly 1◦×1◦ bins with a single ship SST observation490

constitute a surprisingly large percentage (31.8%) of all ICOADS 1992-2010 monthly 1◦×1◦491

bins with ship SST observations (with any No>0). Figure 1a shows local percentages492

of bins included in this study (No ≥2) among all bins with ship SST data (No >0), iden-493

tifying better-sampled areas in North Atlantic and North Pacific Oceans and along ship494

tracks. Figure 1b shows RMS D of differences dM between bin averages of ship SST ob-495

servations and CCI Analysis for 1992-2010 (see equations (6) and (8)).496

These differences have substantial mean and seasonal components, as seen in the497

time-latitude plot of zonally-averaged dM (Figure 1c). Subtracting from dM their cli-498

matological mean reduces the DOF by one for each climatological month, represented499

in the data (Figure 1d), but even accounting for the reduced DOF, the RMS D′ of dM500

anomaly, calculated by (40) and shown in Figure 1e, is appreciably smaller than D (8%501

global RMS reduction).502

The difference dM anomaly is interpreted here as the sum of random errors in bin503

averages of ship observations and of CCI analysis; the estimate E of its RMS D′, based504

on this model, is computed by equation (46) and shown in Figure 1f. It matches D′ pat-505

tern (Figure 1e) in many details. To aid their visual comparison, their difference506

ρ̃ =
(
D̃′ − E

)
/E507

is expressed as the percentage of the estimate E and is shown in Figure 1g, where large508

areas of the actual and estimated RMS agreeing within 10% or so are clearly seen.509

The areas of poor agreement in Figure 1g appear to colocate with areas of smaller510

DOF in Figure 1d. To quantify this relationship, the observed frequency, a.k.a. empir-511

ical probability, of |ρ| in 10% intervals is shown in Figure 2 for different 12-wide DOF512

ranges of dM anomalies (1-12, 13-24,..., 205-216). As DOF increases, |ρ| concentrates more513

in its interval of smallest values. For more than 67% of points where DOF exceeds 50%514

of its maximum value (108= 0.5×12×(19-1)), |ρ|<20%; for more than half of the points,515

where for DOF exceeds 144 (2/3 of its maximum), |ρ|<10%.516

The variance of difference anomaly between bin-averaged ship SST and CCI Anal-517

ysis is modeled by (46), as a sum of squares of two components: estimated RMS error518

(ERMSE) EMo of bin-averaged ship observations, calculated by (47) and shown in Fig-519

ure 3a, and ERMSE of bin-averaged CCI Analysis EMa, calculated using (48) and shown520

in Figure 3b. The former clearly dominates: the CCI analysis error represents only 17.6%521

of the global variance in the total ERMSE E (Figure 1f).522
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(a)ERMSE EMo of bin-averaged ship SST, 0.67◦C (b)ERMSE EMa of bin-averaged CCI, 0.31◦C
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(c)Intra-bin SD of ship observations σ̂∗Bo, 1.20◦C (d) Error reduction factor 1/
√
N ∗, 0.57
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(e) Sampling ESDE υ̂∗o , 0.50◦C (f) Ship measurement ESDE σ̂∗o, 1.14◦C
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(g) Sampling ESDE υ̂∗, 0.57◦C (h) Kent&Challenor(2006) ship ESDE, 1.26◦C
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(i) same as (f), but in 30◦×30◦ averages, 1.13◦C (j) Relative difference ρ : (h) vs (i), 18%
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Figure 3. Components of estimated RMS difference anomaly between bin-averaged ship SST

observations and CCI Analysis: (a) ERMSE EMo of bin-averaged ship SST, ◦C; (b) ERMSE EMa

of bin-averaged CCI Analysis SST, ◦C; (c) Intra-bin SD σ̂∗Bo of ship observations, ◦C; (d) Aver-

age error reduction factor 1/
√
N ∗; (e) Sampling ESDE υ̂∗o from the CCI Analysis match-ups to

ship observations, ◦C; (f) Measurement ESDE σ̂∗o of ship SST, ◦C; (g) Sampling ESDE υ̂∗ from

the full CCI Analysis, ◦C; (h) ship SST random ESDE from Kent and Challenor (2006, their

Figure 2), ◦C; (i) same as (f), but in 30◦×30◦ averages, ◦C; (j) Relative difference ρ between (h)

and (i), %. Numbers at the end of panel labels indicate displayed fields’ global RMS.

As seen from (47), ERMSE for bin-averaged ship observations averages over the523

climatological month m products of intra-bin variance estimates σ̂Bo(m)2 with inverse524

harmonic means 1/N h
o (m) of observational counts. Figures 3c,d show square roots of these525

quantities averaged over available climatological months:526

σ̂∗Bo
def
=

[ ∑
m∈M

µmσ̂
2
Bo(m)

]1/2

, 1/
√
N ∗ def

=

[ ∑
m∈M

µm/N h
o (m)

]1/2

, (54)527

where µm are defined by (41).528

Figure 3c shows, in effect, the ESDE for the bin-averaged ship SST, if all monthly529

bins in the given location only had single observations in them, while 3d shows the ESDE530

reduction factor due to the multiple observations. Because of No≥2 constraint, all val-531

ues shown in 3d do not exceed
√

1/2 ≈0.71; their global RMS is 0.57, and the reduc-532

tions to much smaller factors are relatively rare: the interquartile range is 0.51–0.64, and533

only 3.1% of shown grid boxes have a reduction factor below 0.3.534

As seen from (32), the intra-bin variance σ2
Bo of ship observations consists of sam-535

pling and measurement error variance components. Using (27), (36), and pooled esti-536

mates like (43), these components can be estimated separately; with averaging analo-537

gous to (54), obtain538

υ̂∗2o =
∑
m∈M

µm
∑
y∈Υm

ϕ(y,m)
[
Sao(y,m)2 + Seao(y,m)2

]
, (55)539

σ̂∗2o =
∑
m∈M

µm
∑
y∈Υm

ϕ(y,m)
[
Sd(y,m)2 − Seao(y,m)2

]
, (56)540

where ϕ is defined by (44),(45). The intra-bin sampling υ̂∗o and measurement σ̂∗o ESDE541

for ship observations, computed by (55) and (56) are shown in Figures 3e,f. As with σ̂∗Bo,542

these are essentially ESDE components for a single observation, which are reduced by543

the factor 1/
√
N ∗ (Figure 3d), when more observations are available.544

5 Discussion545

5.1 Sampling error546

Estimate υ̂∗o , given by (55) is based on the match-ups of the CCI Analysis SST and547

its uncertainty to the ship SST observations, a relatively small data sample. An estimate,548

based on the equation (23) that uses full CCI Analysis and its uncertainty549

υ̂∗2 =
1

228

12∑
m=1

2010∑
y=1992

[
Sa(y,m)2 + Sea(y,m)2

]
550

is shown in Figure 3g. Expectedly, this estimate is larger (by about 10% in areas of high551

DOF numbers) and smoother than the one based on the incomplete data (Figure 3e).552

It has the uncanny similarity in pattern, but generally is larger than the estimate pre-553

sented by Kennedy et al. (2011, their Figure 1d).554
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Figure 4. Empirical probability distributions, a.k.a. observed relative frequencies, of esti-

mated SD of measurement σ̂∗o and sampling υ̂∗o errors, for different ranges of the total number of

degrees of freedom (DOF) Φ that are available for error variance estimation at each location in

the 1992-2010 ICOADS ship SST data. Shown are (a) the distribution of measurement error SD

estimates σ̂∗o, given the Φ range; (b) the empirical distribution of Φ values in the whole sample

of the data used, for the same Φ bins, as used the calculation of two-dimensional histograms; (c)

same as (a), but for the sampling error SD estimates υ̂∗o ; (d) same as (a) and (c), but for the ra-

tio of sampling error SDs υ̂∗o/υ̂
∗, estimated from the ship data match-ups from the CCI analysis

and from the full analysis data. White lines in panels (a), (c), and (d) are contours of cumulative

empirical probability, conditional on Φ, for σ̂∗o, υ̂∗o , and υ̂∗o/υ̂
∗ ratio, respectively, corresponding

to 0.01, 0.05, 0.33, 0.5, 0.67. 095, and 0.99 levels, as labels indicate.
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5.2 Measurement error555

Kent and Challenor (2006) used the semivariogram method to estimate SST mea-556

surement error in 1970–1997 ICOADS data from ships. They identified pairs of ship SST557

observations made at the same hour and within 300 km of each other; squared differences558

between paired observations were binned by distance to construct the semivariogram;559

a linear fit to its points was extended towards zero distance separation to obtain the mea-560

surement error variance as the semivariogram’s nugget. Ship measurement ESDE in 30◦×30◦561

averages from Kent and Challenor (2006, their Figure 2) is compared here with the mea-562

surement error estimates σ̂∗o, averaged to the same 30◦×30◦ grid (Figure 3h,i). Two es-563

timates have a great deal of similarity (their pattern correlation is 0.75), despite the dif-564

ferences in the study period and estimation method. Relative difference ρ, shown in Fig-565

ure 3j has global RMS of 18.0%, with |ρ|≤10% in most of grid boxes. Grid boxes with566

|ρ| >10% are generallyly in the areas of poor data coverage (cf. Figure 1d).567

Kent and Berry (2008) introduced the measurement error model for marine obser-568

vations that combines random error with a “platform-dependent” bias or “micro-bias”,569

with the randomly distributed value over the platforms (ships). For this kind of error570

structure, if a bin contains many observations from a relatively small number of plat-571

forms, the error variance of its mean decreases inversely-proportionally to the number572

of platforms, rather than to the total number of observations. However, since moving573

ships, even at 14 knots (a relatively slow speed for modern ships), would cross the equa-574

torial 1◦×1◦ bin in less than six hours (a typical time interval between ship observations),575

multiple observations from the same ship would not typically appear in the same bin,576

thus making equation (2) usable in this study.577

Kennedy (2014, Table 1) listed published in 1965-2011 ship SST measurement ESDE578

that did not separate micro-biases from the purely random error parts. There are 19 es-579

timates there, ranging from 0.11◦C to 3.5◦C, with the median of 1.2◦C, and 1–1.3◦C in-580

terquartile range. Depending on the way of averaging measurement error estimates and581

especially on the averaging domain, global estimates can change appreciably. (Kent and582

Challenor (2006) report their global ESDE for ship SST random error as 1.2◦C, if weighted583

by ocean area, and 1.3◦C, if weighted by number of observations.) Estimates σ̂∗o here584

can average to the global RMS of 1.14◦C (Figure 3f), 1.13◦C (Figure 3i), or 1.21◦C, if585

the latter is constrained to the exact domain, where estimates in Figure 3h (global RMS586

of 1.26◦C) are available.587

Predominant ship tracks are easy to identify in Figure 3(d) as lines of low values.588

It is somewhat surprising though to see ship tracks characterized by higher values of SD589

estimates σ̂∗Bo and σ̂∗o in Figures 3c,f. To investigate this issue, empirical probability dis-590

tributions, a.k.a. observed relative frequencies, of estimated SD of measurement σ̂∗o and591

sampling υ̂∗o errors (whose sum of squares amounts to σ̂∗ 2
Bo, for different ranges of the592

total number of degrees of freedom (DOF) Φ that are available for error variance esti-593

mation at each location in the 1992-2010 ICOADS ship SST data. The calculation is based594

on two-dimensional histograms whose bins are defined as grid boxes of uniform grids for595

SD σ and log10 Φ values, with grid steps of 0.1oC and 0.5, respecively. The histogram596

h(σ, log10 Φ) is then normalized along the σ axis, resulting in the empirical probability597

function:598

p(σ|Φ) = h(σ, log10 Φ)
/
H(Φ),599

where600

H(Φ) =
∑
σ

h(σ, log10 Φ)601

is the distribution of absolute frequencies of Φ values. Figures 4a,c show empirical prob-602

ability distributions, conditional on Φ being within the given range (bin) of values. The603

overall (marginal) empirical distribution of Φ values is computed as its relative frequen-604
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cies605

p(Φ) = H(Φ)
/∑

Φ

H(Φ)606

and is shown in Figure Figure 4d shows υ̂∗o the empirical probability disribution p(υ̂∗o/υ̂
∗|Φ)607

calculated in a simila way, using for the ratio values histogram bins of the with 0.1.608

6 Conclusions609

Rigorous formalism is proposed for modeling uncertainties in bin averages of SST ob-610

servations irregularly sampled by ships, based on a comparison with an independent satel-611

lite SST analysis product of higher time-space resolution (compared to the bin’s dimen-612

sions). The model allows for climatologically-dependent systematic biases in ship obser-613

vations and assumes i.i.d. random measurement error and randomly distributed times614

and locations of ship observations within the bin. For the error in the analysis values,615

product-specified grid point uncertainties are used as given, with a supplementary as-616

sumption of high correlation between analysis errors within the bin. The main outcomes617

of the method are uncertainty estimates for ship SST averages, as well as their sampling618

and measurement uncertainty components.619

The method was applied to the 1992–2010 comparison between ICOADS (Release620

3.0) ship SST and ESA SST CCI Analysis (version 1.0). Differences between monthly621

1◦×1◦ bin averages (for bins that contain more than one observation) of ICOADS ship622

SST and of the ESA SST CCI Analysis were presented here as the sum of their clima-623

tological bias component and remaining residuals (anomalies), whose magnitudes agreed624

well in the areas of sufficient data coverage with the estimates based on the proposed ran-625

dom error model. Location-dependent estimates of ship SST measurement and sam-626

pling uncertainties were obtained. Estimates of sampling uncertainty were similar in pat-627

tern, but larger than those previously published. Ship SST measurement error was con-628

sistent with previous estimates in large-scale spatial pattern and global RMS values (found629

to be 1.13-1.21◦C, depending on the averaging domain and procedure).630
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