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SUMMARY

In this paper, the optimal con� gurations of model resolution, observation resolution and observation density
are investigated in a simple one-dimensional framework. In this context, the representativeness error is formalized
and estimated before being used in the analysis-error formulation. Some optimal and suboptimal assimilation-
schemes, differing from different approximations of observation-error covariance and observation operator, are
compared. The optimal observation-extent is determined as a function of model resolution. Increasing the
observation density is usually bene� cial, except for suboptimal schemes similar to the ones used in operational
practice. The impact of thinning the observations with correlated error is also studied from a suboptimal viewpoint.
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1. INTRODUCTION

In the past decade, a substantial part of the improvement of operational global nu-
merical weather prediction (NWP) has come from use of variational assimilation tech-
niques (Le Dimet and Talagrand 1986; Parrish and Derber 1992; Andersson et al. 1998;
Lorenc et al. 2000; Rabier et al. 2000) and of satellite data. An essential parameter
for remote-sensing instruments is the resolution of the observations (i.e., ‘footprint’ of a
nadir measurement). The horizontal resolution of the observations can vary from several
kilometres for a nadir-viewing instrument to hundreds of kilometres for a limb sounder.
Another important parameter is the observation density, which can usually be character-
ized by the spacing between two adjacent observations. Finding optimal observation-
resolution and density for various applications should be part of the assessment of
current instruments and the design of future ones. In particular, for NWP, one would
like to know how this optimal observation-resolution and density are related to model
resolution. In general, there will always be an incentive to increase the model resolution
to better resolve phenomena of smaller scale. Miller (1999) has shown that increasing
the model resolutions (both of the analysis and of the forecast) at the European Centre
for Medium-Range Weather Forecasts (ECMWF) is bene� cial in providing better analy-
ses and forecasts, particularly for severe weather events. Consequently, it is particularly
interesting to examine how observations should be provided to best adapt to the model
resolution.

According to the Bayesian probabilistic theorem (see Lorenc (1986) for a derivation
of data assimilation), the variational formulation requires correct error-statistics of the
background and the observations to be used in the cost function to obtain optimal-
state estimation. However, these error statistics are still far from perfect. For example,
the representativeness error (Lorenc 1986; Daley 1993), which is thought to introduce
spatial correlations in the observational error, is dif� cult to estimate and expensive to
specify in the minimization of the cost function. Thinning of observations (Järvinen and
Undén 1997) is often used in operational practice, and it is an ef� cient way to reduce
the effective error-correlation. Two open questions are (a) under which conditions
the best balance between observation correlation and thinning can be reached and
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(b) whether the consideration of observation-error correlation in the cost function can
further improve the analysis quality.

In this paper, these general issues will be dealt with in a systematic way in a sim-
ple one-dimensional (1-D) framework. In section 2, the 1-D experimental framework
is presented. In section 3, experiments are performed to � nd some optimal con� gura-
tions of model resolution, observation resolution and observation density for different
observation-types and different analysis-schemes. Conclusions are given in section 4.

2. EXPERIMENTAL FRAMEWORK

In this section, we shall introduce the experimental 1-D framework used to simulate
the results of various analyses. The characteristics of the observations, true background
errors and true signal will be de� ned and the analysis equations will be recalled.

(a) True signal and its covariance
Let us consider a 1-D periodic domain ¡¼a 6 r 6 ¼a. The length of the domain is

taken as L D 2¼a ¼ 8000 km (a D 1250 km). We assume that the true signal x t.r/ in
this 1-D domain is a continuous real function and can be expressed as a Fourier series,
truncated at wave number Kt. The function values x t.rj / at any N discrete positions
rj .j D 1; : : : ; N/ can be written as xt D .x t.rj //,

xt D Ft Oxt; (1)

where Oxt stands for the complex Fourier coef� cients vector of length M t D 2Kt C 1
with complex conjugate elements Ox t

k D . Oxt
¡k/¤. Ft is the Fourier-transform matrix of

dimension N £ Mt with elements Fjk D exp.ikrj =a/. Here the superscript t signi� es
‘true’ and is used to distinguish the true values for the analysis variables described in
the next subsection. In this study, there is no real atmospheric variable and therefore the
unit of xt.r/ is arbitrary. However, the characteristics of the signal will be speci� ed to
approximate some realistic situation.

We assume that the covariance of the truth in Fourier space OS is diagonal, with
elements ¾ 2

t O½t
k. Here ¾ 2

t is the true-signal variance. Throughout this study, one takes
¾t D 10 — ten times the magnitude of the background and measurement errors which
are speci� ed to be 1. O½ t

k is the power spectrum of the second-order autoregressive
correlation-function (Thiébaux 1976) given by

½t.r/ D
»

cos.br/ C
sin.br/

Ltb

¼
exp.¡r=Lt/; (2)

where b and Lt are constants and r (0 6 r 6 ¼a) is the absolute distance between
two points. We chose b D 4=a and L t D a=3 D 417 km as did Daley (1993). For these
speci� cations, the value Kt D 200 will be used, which is large enough to allow the scales
beyond it to be ignored.

(b) Analysed signal and background-error covariance
The variables to be analysed are the Fourier spectral coef� cients ranging from wave

number ¡Km to Km (Km 6 Kt). The associated analysis-mesh spacing is 1r D 2¼a=M
with the dimension of the model M D 2Km C 1. Consequently, the model representation
of the truth is a wave-number-limited � ltered truth, which can be expressed as

x D F Ox: (3)
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Equation (3) is similar to (1), except that in Ox and F there are no terms with wave number
higher than Km. Note that the superscript t has been removed to distinguish (3) from (1).
In fact, the wave number-limited � lter (rectangular window) approximately corresponds
to a spatial smoothing given by

x.rj / D
Z

¼a

¡¼a

xt.r/w.r ¡ rj / dr; (4)

with the so-called cardinal weighting-function (Petersen and Middleton (1963); see
appendix of the present paper for a derivation)

w.r ¡ rj / D
sinfKm.r ¡ rj /=ag

¼.r ¡ rj /
: (5)

The background spectral vector is denoted by Oxb. Its error covariance OB is assumed
to be diagonal with elements ¾ 2

b O½b
k . Here ¾ 2

b D 1 is the background-errorvariance and O½ b
k

is the power spectrum of a degenerate second-order autoregressive correlation-function
(Thiébaux et al. 1986) given by

½b.r/ D
³

1 C
r

Lb

´
exp.¡r=Lb/; (6)

where Lb D a=6 D 208 km is the background-error correlation-length.

(c) Observations
Most instruments can be roughly grouped into two categories: in situ instruments

that measure the signal value at a point and remote-sensing instruments that measure
some sort of spatial integral of the signal. Here we suppose that the perfect measure
yt.ro/ (without noise) at a point ro from a remote-sensing instrument is a linear weighted
integral of the underlying signal centred in ro, namely

yt.ro/ D
Z ¼a

¡¼a

x t.r/w.r ¡ ro/ dr: (7)

The weighting function w.r ¡ ro/ plays a spatial smoothing role. Moreover, (7) can be
expressed as an equivalent � ltering form in Fourier space given by

y t.ro/ D
KtX

kD¡Kt

Owk Oxk exp.ikro=a/; (8)

where Owk is the spectral weighting coef� cient at wave number k. For an observation
vector yt, (8) can be written as

yt D Gt Oxt D FtWt Oxt; (9)

where Wt is a diagonal matrix with elements Owk . Ft and Oxt are respectively the Fourier-
transform matrix and the spectral-coef� cients vector. We de� ne G t D FtWt as the
weighted Fourier-transform matrix.

In the present study, we consider weighting functions associated with two remote-
sensing instruments:
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(1) the uniform weighting-function with its corresponding spectral form

w.r/ D

8
>>><

>>>:

0

³
jr j >

Lo

2

´

1
Lo

³
jr j 6

Lo

2

´ Owk D

8
>>><

>>>:

1 .k D 0/

sin.kLo=2a/

kLo=2a
.k 6D 0/

; (10)

(this is practical for horizontal sampling of a nadir-viewing instrument with a limited
� eld of view Lo)

(2) and the Gaussian weighting-function with its corresponding spectral form

w.r/ D exp.¡4r2=L2
o/

¿ Z ¼a

¡¼a

exp.¡4r2=L2
o/ dr

Owk D exp.¡k2L2
o=16a2/:

(11)

Here the constant 4 allows Lo to be roughly related to the realistic extent of the obser-
vation (e.g., in the sense that the weight at r D Lo=2 is reduced to 1=e of the maximal
weight). This Gaussian-type weighting-function has been used by Daley (1993) to study
the representativeness error due to the misspeci� cation of the observation operator in a
similar 1-D context.

In situ measurements can be considered as a special case of the above two remote-
sensing measurements with Lo D 0 in which w.r/ becomes a Dirac Delta function and
with Owk being equal to one for all values of k. In Fig. 1, three weighting functions are
plotted respectively in physical space (Fig. 1(a)) and Fourier space (Fig. 1(b)). For the
sake of clarity, the weighting functions in physical space are plotted only in the interval
[¡200 km; 200 km]. In addition to the uniform and Gaussian weighting-functions, the
cardinal weighting-function is also shown, as it corresponds to the representation of
the model. The model spectral-truncation Km D 39 corresponds to an analysis mesh
of 100 km, which is the same as the observation resolution Lo of the uniform and
Gaussian instruments. One can see that the model representation and the observation
representation of the signal are signi� cantly different even though they have the same
resolution. In the next subsection, we will show how these differences are transformed
into the term of the representativeness error. Here we have referred to Lo as the
observation resolution. In some literature, the notion of the observation resolution is
often referred to as the observation network spacing, whereas we will use the phrase
‘observation resolution’ to indicate the property of a remote-sensing instrument itself
which should be carefully distinguished from the station interval or density of an
observation network.

(d ) Representativeness error and the observation operator
In this study, we consider only an observation network consisting of N equally-

spaced stations. At each station, the instrument measures the signal with a weighting
function described as aboveso that the observation vector y of length N can be expressed
as

y D Gt Oxt C ² i; (12)

where ² i is the instrument-error vector. Now we de� ne the observation operator H
(N £ M matrix) which computes the model representation of the observations ym,
starting from the analysed spectral vector Ox of length M given by

ym D H Ox D HTOxt; (13)
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Figure 1. Observation weighting-functions: (a) spatial weighting-functions w.r/ at point r D 0 as a function
of the ordinate r ; (b) spectral weighting Owk as a function of wave number k. Corresponding parameters are the
following: cardinal weighting-function: Km D 39 (analysis mesh 1r D 100 km); uniform and Gauss weighting-

functions: Lo D 100 km.
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where the truncation operator T cuts off the complete spectral vector Oxt to the analysed
spectral vector Ox. Subtracting (12) from (13) and then performing the expectation
operation, we obtain the observation-error covariance

R D Ri C RH; (14)

where Ri is the instrument-error covariance which is supposed to be diagonal with
elements ¾ 2

o equal to 1 (variance) and

RH D .HT ¡ Gt/ OS.HT ¡ Gt/¤ (15)

is the representativeness-error covariance (Daley 1993; Mitchell and Daley 1997). Here,
OS is the true signal spectral covariance de� ned in subsection 2(a) and the star stands
for the complex conjugate transpose of the matrix. We have assumed that there is
no correlation either between the instrument error and the representativeness error or
between the error and the signal. The representativeness errors are correlated (RH is not
diagonal) as a result of the correlated signal.

In practice, the weighting function of the remote-sensing instrument could either be
unknown or be known but dif� cult to use in the computation, so that the measurement
has to be considered simply as a point value in model space. To examine the effect of
this, two observation operators are considered:

² HW D G D FW, a version of the weighted Fourier transform matrix Gt truncated
at wave number Km, which assumes that the observation weighting-function w.r/ and
hence Owk are perfectly known and modelled correctly.

² HI D F, the Fourier-transform matrix truncated at wave number Km, which
ignores the weighting matrix W and means that any observation is always regarded
as if it had the same cardinal weighting-function as the model. Here the subscript ‘I’
indicates that the weighted matrix W is replaced by an identity matrix.

Note that the matrices G, F and W only contain wave-number components with
jkj 6 Km of the corresponding Gt, Ft and Wt. Both HW and HI allow us to transform
directly the spectral coef� cients to the values at any observation positions and no inter-
mediate interpolation process is required. For H D HW, the variance of the representa-
tiveness error given by

¾ 2
HW

D ¾ 2
t

X

jkj>Km

Ow2
k O½ t

k (16)

contains only the contribution of the unresolved scales. For H D H I, the variance of the
representativeness error given by

¾ 2
HI

D ¾ 2
t

µ X

jkj>Km

Ow2
k O½ t

k C
X

jkj6Km

.1 ¡ Owk/2 O½t
k

¶
(17)

contains both the contribution of the unresolved scales and the misrepresentation of
the observation operator in the resolved scales. In practice, the second term stands
for the difference between the model representation and the observation representation
of the signal in model-resolved scales. Equations (16) and (17) are, practically, the
sum of spectral variance components of the representativeness error (making use of the
fact that the diagonal covariance matrix in spectral space corresponds to an isotropic
covariance in physical space and that the sum of the spectral variance components
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is equal to the average of the error variance in physical space). They will be used
in section 3 for explanations of the representativeness error. As a result of using
the Fourier-transform matrix, both ¾HW and ¾HI are independent of the position of
observations, and of their density, for both regular and irregular observation-networks
(Daley 1993).

(e) Analysis schemes
Applying the variational formulation (Lorenc 1986) to our 1-D problem, the optimal

estimation of the model spectral-coef� cients is to minimize a cost function given by

J .Ox/ D 1
2.Ox ¡ Oxb/¤ OB¡1

.Ox ¡ Oxb/ C 1
2 .HOx ¡ y/¤R¡1.H Ox ¡ y/: (18)

We recall that Ox is the spectral vector to be analysed (truncated at wave number Km) and
Oxb is the background vector. y, H, OB and R are respectively the observation vector, the
observation operator, the (spectral) background-error covariance and the observation-
error covariance. The star stands for the complex conjugate transpose. In the case of a
linear observation-operator, the direct solution of minimizing (18) is given by

Oxa D Oxb C K.y ¡ H Oxb/; (19)

with the gain matrix

K D OBH¤.H OBH¤ C R/¡1 D . OB¡1 C H¤R¡1H/¡1H¤R¡1: (20)

For any gain matrix K, the general analysis-error covariance (Ghil and Malanotte-
Rizzoli 1991) is given by

OA D .I ¡ KH/ OBt
.I ¡ KH/¤ C KRtK¤; (21)

where I is the identity matrix and H is the speci� ed observation operator. The super-
script t is used to indicate ‘true’ OB and R, which should be distinguished from the spec-
i� ed ones included in the gain matrix K. Here we recall that the true observation-error
covariance includes the contribution of both the instrument and representativeness errors
((14) and (15)). The quality of the analysis scheme depends strongly on the observation
operator H, the observation-error covariance R and the background-error covariance OB
being correctly speci� ed. If this is so, then the scheme is optimal and the general error-
covariance equation (21) reduces to a simpler form as

OA D . OB¡1 C H¤R¡1H/¡1: (22)

That is, the analysis precision (inverse of error) is the sum of the precision of the
background and the observations. In fact, the general expression (21) can be used in
all cases to compute the analysis error. In the optimal case, one would obtain exactly the
same analysis error from (21) and (22). The spectral covariance can be transformed to
grid-point space using the inverse Fourier-transform matrix.

In this study, we focus on the effect of different H and R, whereas OB is always
assumed to be speci� ed correctly. We consider the following schemes with different
con� gurations:

² scheme HWR: with the ‘weighted’ observation-operator H D HW and the com-
plete observation-error covariance R D Ri C RHW , the corresponding analysis-error
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covariance can be written as

OA D [ OB¡1 C W¤F¤.Ri C RHW/¡1FW]¡1I (23)

² scheme HIR: with the ‘simpli� ed’ observation operator H D HI and the com-
plete observation-error covariance R D Ri C RHI , the corresponding analysis-error
covariance is

OA D [ OB¡1 C F¤.Ri C RHI/¡1F]¡1I (24)

² scheme HWRdiag: with the ‘weighted’ observation operator H D HW and the
diagonal observation-error covariance R D R i C diag.RHW/. In this case, the data with
correlated error are assimilated as if they were uncorrelated;

² scheme HIRdiag: with the ‘simpli� ed’ observation operator H D HI and the
diagonal observation-error covariance R D R i C diag.RHI/.

Note that RHW and RHI are the realistic representativeness-error covariances
obtained for the corresponding observation-operators HW and HI. Our study is purely
statistical and thus there is no need to simulate the signal and the observations, but only
to manipulate the covariance matrices. In the next section, we attempt to answer the
questions posed in the introduction by examining these analysis schemes with various
con� gurations of the model resolution and the observation resolution and density.

3. RESULTS

In this section, the representativeness-error covariance is estimated for various
con� gurations and then used in the analysis schemes. The analysis-error variance is
used as the criterion of the analysis quality. Two kinds of observation network are
considered in practical computation: uniform (equally-spaced) and homogeneous. The
latter is achieved by dividing the domain into equal intervals and placing one observation
station randomly within each interval (Daley 1993). As explained in subsection 2(d),
the two observation operators used in our computations are of Fourier type so that
the representativeness-error variance is independent of the location and density of
observations. This results in the analysis error having no large differences between
uniform and homogeneous networks having the same number of observations (the
analysis error for the homogeneous network is slightly bigger). Consequently, only the
results for the uniform observation network are shown below.

(a) Case with uniform weighting-function
This kind of observation is de� ned in (10) and shown in Figs. 1(a,b) (dashed

line). The representativeness r.m.s. error ¾H as a function of the observation resolution
Lo is given in Fig. 2(a) for H D HW and H D HI. The computational con� guration
is the following: wave-number limit of the true signal Kt D 200, standard deviation
of true signal ¾t D 10, model truncation Km D 39 (analysis mesh 1r D 100 km) and
observation number N D 79 (the same as the dimension of the model). As expected, at
Lo D 0 (in situ measurement) where Owk is equal to one for all values of k and the two
observation operators are identical, the representativeness error is the same. Moreover,
we note that the representativeness error for H D HW decreases monotonously with
the increase of Lo. For H D HI, a minimum r.m.s. error is situated at Lo D 80 km.
These features are consistent with those used by Daley (1993, Fig. 2) and can be
explained by (16), (17) and Fig. 1. For H D HW, the representativeness error contains
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only the contribution of the unresolved scale, which decreases as L o increases ( Owk will
be narrower). For H D HI, the representativeness error contains both the contribution
of the unresolved and resolved scales. As Lo increases, narrower spectral weight
increases the distance between the cardinal and the uniform spectral weighting-curves
(see Fig. 1(b)). This causes the errors in resolved scales to increase. The minimum
of the representativeness error for H D HI is the result of the compromise between
the errors resulting from the unresolved and resolved scales. Moreover, Lo (80 km)
at the minimum position is comparable to the analysis mesh size (100 km). That is,
the most representative observation is the uniform average of the signal within the
analysis mesh box. This also indicates that it is reasonable to use the average of values
within the analysis mesh box as an approximation to the value at a grid point in the
model. Note that the overall observation-error correlation is the result of the sum of the
uncorrelated instrument-error and the correlated representativeness-error. In the case
shown in Fig. 2, the maximal representativeness r.m.s. error is 0.53 so that the maximal
possible correlation for adjacent observations is not greater than 0:532=.1 C 0:532/ ¼
0:22 (diagonal elements of total observation-error covariance are 1 C 0:532 and off-
diagonal elements from the representativeness-error covariance are smaller than 0:532).
This weak observation-error correlation implies that the schemes HWRdiag and HIRdiag
are very similar to that of the schemes HWR and HIR. Consequently, in this subsection,
only the results of the schemes HWR and HIR are discussed. The effect of the
correlation will be treated in subsection 3(c).

Analysis r.m.s. errors as a function of the observation resolution Lo are shown in
Fig. 2(b). Here we recall that both the background- and the instrument-error variances
are taken as 1. The correlation length of the background error Lb is 208 km. One sees
that for the scheme HIR the variation of the analysis error with Lo is consistent with
that of the corresponding representativeness-error. A minimum analysis-error appears
in the same Lo position (80 km) as that of the representativeness error. However, this
is not the case for the scheme HWR where a minimum analysis-error at Lo D 60 km
is not associated with a minimum representativeness-error. In addition, we also note
that the scheme HWR is not always better than the scheme HIR which seems to
be counter-intuitive. It seems reasonable to believe that a more accurate observation-
operator HW would result in a better analysis than the approximate one H I. Indeed,
the representativeness error is smaller for H D HW than for H D HI. However, the
observation operator also plays a role in projecting the instrument and representativeness
errors to spectral space. In fact, if we examine only the observation term in (23) and (24),
i.e., compare the projection of the observation precision (inverse of error) with the model
space W¤F¤.Ri C RHW/¡1FW and F¤.Ri C RHI/¡1F, we � nd that the scheme HWR
is less accurate than the scheme H IR for all values of Lo (Fig. 3). To explain this, we
show in Fig. 4 the spectral precision (reciprocal of spectral variance) of the observation
term as a function of wave number for Lo D 20 km and Lo D 100 km. One can see that
the reduction of spectral precision of the observation term with the increase of wave
number is larger for H D HW (solid line) than for H D HI (dashed line). This is because
the presence of the spectral weighting-matrix W produces an additional damping effect
for H D HW. The order of the damping at wave number k would be Ow 2

k . This suggests
that, to choose a good observation-operator, we should examine not only its ability to
reduce the representativeness error, but also its projection effect onto the model space.
One also notes that the variation range of the analysis error in Fig. 2(b) is much smaller
than that in Fig. 3 (particularly for the scheme HWR). This is because the background
error has a red spectrum (spectral errors decrease with increase of wave number), which
means that the background has a very high spectral precision for high wave-numbers
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Figure 2. Errors as a function of the observation resolution Lo for the observation with the uniform weighting-
function: (a) representativeness error; (b) analysis error. In each panel the two curves are respectively for the
‘weighted’ observation operators HW D G (solid line) and the ‘simpli� ed’ one HI D F (dashed line). Con-
� guration is the following: wave-number limit of the true signal Kt D 200, standard deviation of true signal
¾t D 10, model truncation Km D 39 (analysis mesh 1r D 100 km), background- and observation-error variances
¾b D ¾o D 1, correlation length of the background error Lb D 208 km and number of observations N D 79 (the

same as the dimension of the model).

and can compensate the degradation in small scales induced by the damping effect of
the spectral weighting-matrix W (the contribution of the observation term is very small
for small scales). In consequence, the difference between the two schemes in Fig. 2(b)
will come mainly from the contribution of large scales (e.g., wave number jkj < 20).
This is why the scheme HWR is better than the scheme HIR for some large Lo where
spectral precision in large scales is higher for the scheme HWR than for the scheme
HIR as shown in Fig. 4(b).

In the next experiment, two � elds were created by doubling and halving the initial
number of observations, whilst keeping an equal, but different, spacing between the
observations in each of the new � elds. The result is shown in Fig. 5. Note that the
variance of the representativeness error is independent of the observation density in our
context and therefore Fig. 2(a) is still valid. For more observations (Fig. 5(a)), we note
that, for both schemes, a value of Lo is preferred which is smaller than that in Fig. 2(b).
The optimal observation-resolution (40 km) for the scheme HIR becomes half of that
in Fig. 2(b)—it simply corresponds to the increase of the observation number by two.
For fewer observations (Fig. 5(b)), the optimal Lo for the scheme HIR is still 80 km as
in Fig. 2(b). Moreover, a minimum analysis-error for the scheme HWR appears at about
Lo D 130 km which is greater than the analysis mesh.
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Figure 3. As Fig. 2(b), except that the background term is not considered.

Figure 4. Spectral error precision (reciprocal of spectral variance) as a function of wave number: (a) Lo D
20 km; (b) Lo D 200 km. Con� gurations are as Fig. 2. Solid line: diagonal elements of the matrix W¤F¤.Ri C

RHW /¡1FW. Dashed line: diagonal elements of the matrix F¤.Ri C RHI/¡1F.
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Figure 5. As Fig. 2(b), except for observation number: (a) N D 159; (b) N D 39.

These results suggest that in the case where the observation number N is larger
than the model grid-point number M , the optimal observation-resolution for a uniform
weighting-function can be obtained by an approximate relation Lo ¼ 1r M

N
, with 1r the

analysis mesh size. That is, the denser the observation network, the higher the preferred
observation resolution. Moreover, the simpli� ed observation-operator H I can be used
with good analysis accuracy in this case. For sparser observations, it is possibly more
bene� cial to have a larger value for the observation ‘extent’ or ‘resolution’ Lo than for
the analysis mesh size 1r. In this case, the weighted observation-operatorH W should be
adopted. For example, in the case where a remote-sensing measurement covers multiple
analysis mesh boxes, one should average these grid-point values (this can be regarded
as an approximation of our weighted observation-operator) rather than interpolate them
for comparing to the real observation.

Changing the model resolution leads to similar results. For example, for the scheme
HIR, one � nds an optimal observation-resolution Lo D 160 km and Lo D 80 km in
the case 1r D 200 km respectively for N D M and for N D 2M . Another parameter
possibly in� uencing the results is the correlation length of the background error Lb.
Figure 6 gives the results for Lb D 100 km and Lb D 300 km. Other parameters are the
same as those in Fig. 2(b). One sees that the correlation length of the background error
affects to a large extent the overall analysis accuracy but does not modify the overall
shape of the curves. In particular, the optimal observation resolution for the scheme
HIR is not sensitive to the variation of Lb.

Let us now turn to study the effect of the different observation weighting-functions.
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Figure 6. As Fig. 2(b), except for the correlation length of the background error: (a) Lb D 100 km;
(b) Lb D 300 km.
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Figure 7. Errors as a function of observation resolution Lo for observations using the Gaussian weighting-
function: (a) representativeness error; (b) analysis error. Con� guration is as Fig. 2.

(b) Case with the Gaussian weighting-function
This kind of observation is de� ned in (11). It can be used to approximate the

horizontal weighting-function of some limb- and occultation-sounding instruments.
Figures 7(a,b) show the variation of the representativeness error and the analysis error
as a function of the observation resolution Lo. The con� gurations are the same as in
Fig. 2. One recalls the analysis mesh size 1r D 100 km and the correlation length of the
background error Lb D 208 km. As expected, the qualitative aspects are the same as for
the uniform weighting-function. For example, the representativeness error (Fig. 7(a))
for the scheme HWR decreases monotonously with the increase of Lo. For the scheme
HIR, a minimum representativeness error also appears (for Lo D 60 km). However, the
two observation types lead to different results in quantitative aspects. From Fig. 1, one
can see that for the same Lo the realistic observation-extent of the Gaussian instrument
should be slightly larger than that of the uniform instrument. Moreover, the attenuation
of the signal towards small scales is more rapid for the Gaussian weighting-function.
This leads to such results that, for the observation operator HW, the representativeness
error of the Gaussian observation is smaller than that of the uniform observation, and
inversely for the operator HI. Correspondingly, the optimal observation-resolution Lo
is 60 km which corresponds to a realistic extent of the observation close to 80 km—the
optimal Lo in the case of the uniform observation. Similar relation between the analysis
mesh size, the optimal Lo and the observation number is also obtained when we vary the
model resolution and the observation number as was done for the uniform observation.
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(c) Thinning and observation-error correlation
So far, the observation-error correlation resulting from representativeness error is

so weak that the results of the schemes HWRdiag and HIRdiag cannot be distinguished
from those of the schemes HWR and HIR. To examine the impact of the suboptimal
schemes when error correlation is strong, we consider a case of uniform observations
with Lo D 400 km. The analysis mesh is taken as 100 km, and the other con� gurations,
such as the true signal-covariance as well as the background and the instrument errors,
are kept the same as before. For the simpli� ed observation-operator H I, the represen-
tativeness r.m.s. error reaches 1.54, and the maximal correlation allowed for two ad-
jacent observations is 1:542=.1 C 1:542/ D 0:7. For the weighted observation-operator
HW, the representativeness error almost vanishes so that the overall observation-error
correlation is negligible. Figure 8(a) shows the observation-error correlation relative to
r D 0 for an observation interval of 50 km for HI. The error correlation for two adjacent
observation reaches 0.6, and a weak negative correlation is present for distances greater
than 200 km. Figure 8(b) shows the variation of the analysis r.m.s. error as a function
of the observation interval for the four schemes. For the suboptimal scheme H IRdiag,
which ignores the observation-error correlation, the analysis r.m.s. error does not always
decrease with decrease of the observation interval (which means that more observations
are inserted), and an optimal observation-interval producing the minimum analysis-error
is about 80 km. The scheme H IR can still bene� t from the dense observation since it
takes into account the observation-error correlation correctly. The vanishing error cor-
relation for HW leads to identical results for the schemes HWR and HWRdiag. They
are much better than the schemes HIR and HIRdiag. In addition, one notes that for the
schemes HWR and HWRdiag the analysis error seems to tend to zero with decrease of
the observation interval whereas this is not the case for the scheme H IR. This is consis-
tent with the theoretical results of Mitchell and Daley (1997, Fig. 6 and Appendix C):
(i) with a perfect observation operator (e.g., HW, which makes the representativeness
error vanish in the resolved scales), the analysis error (in the resolved scales) approaches
zero asymptotically as observation density increases, but (ii) an imperfect observation-
operator (e.g., HI, which makes the representativeness error not equal to zero in the
resolved scales) gives rise to strongly correlated error, and the analysis error does not
vanish as observation density increases.

The results above indicate that thinning of observations is necessary for a dense
observation-network with strongly correlated error if a suboptimal analysis-scheme
such as HIRdiag is used. This is already done in most NWP centres (e.g., Järvinen
and Undén 1997). Let us now consider a realistic thinning of the observation system
to better understand the optimality of this ‘thinning’ process. The observations for each
con� guration are extracted from a common network. The elements of the corresponding
error-covariances are also extracted from a complete error covariance for all observa-
tions of this network. The analysis mesh (100 km) and the background error are the
same as before. We suppose that the complete network has an observation interval of
20 km (401 observations). Thinned observations are still equally-spaced, and the thinned
intervals are taken as multiples of 20 km. The observation-error variance (including the
instrument and representativeness errors) is taken as one. For the observation-error cor-
relation, we assume that it is of Gaussian-type exp.¡r 2=2L2

c/ with a correlation scale
Lc D 100 km. The observation operator HI is used in the computation. Note that no
speci� c observation-type is assumed (it may be any observation type that can produce
the assumed observation-error covariance with HI).

Figure 9 shows the results for the optimal (modelling the observation-error correla-
tion) and suboptimal schemes (ignoring the observation-error correlation). Similarly to
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Figure 8. Errors for a uniform observation with Lo D 400 km and Km D 39 (1r D 100 km): (a) correlation of
the observation error for the observation interval of 50 km; (b) analysis error as a function of the observation

interval for the four schemes.
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Figure 9. Thinning of observations with spatially correlated errors. The analysis mesh 1r D 100 km, the
correlation length of the background error Lb D 208 km. The background- and observation-error variances have
a value of one. The observation-error correlation is of Gaussian type with a correlation length of 100 km. The
observations and their error covariances for each con� guration are extracted from an equally-spaced observation

network with an interval of 20 km.

Fig. 8(b), the suboptimal scheme has a optimal thinning interval (200 km), for which
the analysis error is minimum. There, the best balance is reached between the advantage
of increasing the number of observations and the disadvantage of strengthening their
correlation. These results, and others (not shown), indicate that a small correlation-
coef� cient 0.15 between two adjacent measurements is allowed to reach the best bal-
ance. This critical correlation could be considered a safe threshold for the validity of
the suboptimal scheme. As expected, both schemes obtain the same results on the side
of heavy thinning where the error correlation is exactly negligible. Moreover, even for
the optimal scheme, increasing the density of observation beyond a certain threshold
value (an interval of about 150 km in this case) will yield little improvement in analysis
accuracy. This contrasts with observations with spatially uncorrelated errors, when the
improvement of analysis accuracy with increase of observation density is rapid (not
shown). The result is consistent with that of Bergman and Bonner (1976), who used
satellite temperature-soundings with spatially correlated errors in the optimal inter-
polation analysis. More interestingly, the optimal thinning of observations yields an
analysis accuracy close to that of the optimal scheme with all data (0.62 compared to
0.61). It then seems to extract most independent information included in the complete
observation-network.
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4. CONCLUSIONS

The representativeness error is one of the main unknowns in present data-assimila-
tion systems. In a simple 1-D framework, one can estimate and model it in analysis
schemes, and the exact analysis-error covariance can be computed accurately. Different
analysis-schemes and observation weighting-functions were used in this study.

General conclusions can be drawn about the optimal observation resolution and the
choice of observation operator. For the dense observation-network (i.e., the number
of observations N is greater than the number of analysis grid-points M), increasing
the observation resolution (smaller Lo) is bene� cial. The results suggest that an opti-
mal observation-resolution Lo is approximately determined by Lo ¼ 1r M

N
, with 1r the

analysis mesh size. If this is not the case, we should design our remote-sensing instru-
ment to have its resolution as close as possible to that of the model, or larger in some
cases of very sparse observation-network.For the observation extent a few times as large
as the analysis mesh size (as for meso-scale models and some satellite observations), an
average-type observation operator (as HW), rather than an interpolation-type (as HI),
should be used.

In general, for observations with spatially uncorrelated error, increasing the obser-
vation density always signi� cantly improves the analysis accuracy. For observations
with spatially correlated error and using the optimal analysis scheme, which models
the observation-error correlation in the cost function, increasing the observation den-
sity beyond a threshold value will yield little or no improvement in analysis accuracy.
Moreover, the suboptimal analysis scheme (which assimilates the data with correlated
errors as if they were uncorrelated), will limit the use of high-density observations. In
this case, an optimal thinning of observations, which compromises between the risks of
having too small a data density and being hit by correlated observation errors, can extract
most independent information included in the complete observation-network and yield
an analysis accuracy close to that of the optimal scheme with all data. In our case, a
threshold correlation value 0.15 between two adjacent observations is found for this
optimal thinning of observations.

The current variational data-assimilation schemes tend to adopt the incremental
algorithm (Courtier et al. 1994) which allows the analysis to be performed at a reduced
resolution to hasten computation. In this case, the above remarks would be valid, except
that they should be related to the resolution of the increments rather than to the one
associated with the comparison of the atmospheric state to observations. Finally, it
should be mentioned that this study is purely statistical, not especially targeted towards
real atmospheric situations, and consequently can only provide general guide-lines.
The real representativeness-error will be � ow-dependent and vary with space and time.
Obviously, an in situ measurement might be suf� cient to represent the atmospheric
state in a wide area around it in settled weather, but not during stormy conditions.
Further studies should be performed for real situations, particularly for some ‘dif� cult’
atmospheric cases using a practical 3-D NWP model.

APPENDIX

The cardinal weighting-function given by (5) is well known in classical sampling
theory (see Petersen and Middleton (1963) for an application in meteorology). For a
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general weighting function w.r/ de� ned in a 1-D periodical domain, we have

yt.ro/ D
Z ¼a

rD¡¼a

x tw.r ¡ ro/ dr

D
C1X

kD¡1
Oxk

µ Z
¼a

rD¡¼a

exp.ikr=a/w.r ¡ ro/ dr

¶

D
C1X

kD¡1
Oxk

µ Z
¼a¡ro

sD¡¼a¡ro

expfik.s C ro/=agw.s/ ds

¶

D
C1X

kD¡1
Oxk exp.ikro=a/

µ Z ¼a¡ro

sD¡¼a¡ro

exp.iks=a/w.s/ ds

¶
:

(A.1)

Now the question is to perform the integral within square brackets. For the cardinal
weighting-function (5), the spectral weighting-coef� cients are following a rectangular
window ( Owk D 1 for jkj 6 Km and Owk D 0 for jkj > Km). It is more convenient to
perform the derivation from spectral space to physical space. Extending the limit of
integration within square brackets to in� nity, we have

Z
¼a¡ro

sD¡¼a¡ro

exp.iks=a/w.s/ ds

¼
Z 1

sD¡1
exp.iks=a/w.s/ ds (A.2)

D Owk:

Extending the integration to in� nity allows us to use the Fourier transformation formula,
namely

w.s/ D
1

2¼a

Z 1

kD¡1
exp.¡iks=a/ Owk dk

D
1

2¼a

Z Km

kD¡Km

exp.¡iks=a/ dk

D ¡
a

2¼ais
exp.¡iks=a/

Km

kD¡Km

D
sin.Kms=a/

¼s
:

(A.3)

This is the cardinal weighting-function (5). Integrating numerically
Z ¼a

sD¡¼a

exp.iks=a/
sin.Kms=a/

¼s
ds

for the given Km and k, we indeed obtain a rectangular window in spectral space.
The formula is approximate (because of the extension of the limits of integration).
However, this does not affect our results for representativeness errors and analysis errors
since this cardinal weighting-function was not used explicitly in the computation. The
essential motivation of giving this cardinal weighting-function is to provide a physical
interpretation of the analysis mesh values for this 1-D spectral ‘model’. This allows
us to compare explicitly the representation of model and observations to true signal in
physical space (Fig. 1(a)). Equations (10) and (11) can also be obtained by integrating
the corresponding weighting-functions.
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grand for fruitful discussions. Two anonymous referees are gratefully acknowledged for
some useful comments on an earlier version of the manuscript.

REFERENCES

Andersson, E., Haseler, J.,
Undén, P., Courtier, P.,
Kelly, G., Vasiljević, D.,
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