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ABSTRACT

A method is developed to quantify systematic errors in two types of sea surface temperature (SST)
observations: bucket and engine-intake measurements. A simple linear model is proposed where the SST
measured using a bucket is cooled or warmed by a fraction of the air–sea temperature difference and the
SST measured using an engine intake has a constant bias. The model is applied to collocated nighttime
observations made at moderate wind speeds, allowing the effects of solar radiation and strong vertical
gradients in the upper ocean to be neglected. The analysis is complicated by large random errors in all of
the variables used. To estimate coefficients in this model, a novel type of linear regression, where errors in
two variables are correlated with each other, is introduced. Because of the uncertainty in a priori estimates
of the error covariance matrix, a Bayesian analysis of the regression problem is developed, and maximum
likelihood approximations to the posterior distributions of the model parameters are obtained.

Results show that the temperature change in bucket SST resulting from the air–sea temperature differ-
ence can be detected. The analysis suggests that bucket SST may be in error by a fraction from 0.12° � 0.02°
to 0.16° � 0.02°C of the air–sea temperature difference. When this temperature change of the bucket SST
is accounted for, a warm bias in engine-intake SST in the mid- to late 1970s and the 1980s was found to be
smaller than that suggested by previous studies, ranging between 0.09° � 0.06° and 0.18° � 0.05°C. For the
early 1990s the model suggests that the engine-intake SSTs may have a cold bias of �0.13° � 0.07°C.

1. Introduction

It is well known that there are significant differences
between in situ sea surface temperature (SST) mea-
sured by voluntary observing ships (VOSs) using the
two most common methods: bucket and engine intake
(Roll 1951; Saur 1963; Walden 1966; Crawford 1969;
Tauber 1969; James and Fox 1972; Parker 1985; Folland
et al. 1993, Kent et al. 1993; Folland and Parker 1995,
hereafter FP95). Kent and Taylor (2006, hereafter Part
I) summarize the results of these studies, some of which
have never been published in the refereed literature.
However, modeling these differences is difficult. For
example, the bucket SST is expected to be affected by
the effects of turbulent fluxes, which typically cool the

sample as it is hauled from the sea surface to the deck.
To estimate the turbulent fluxes we need the air–sea
temperature difference, which is poorly known due
partly to large random errors in the temperature obser-
vations (Kent and Berry 2005) and partly to biases in
the data (Berry et al. 2004; Part I). Any individual SST
measurement is affected by the individual circum-
stances of the observation, for example, the bucket
could have been left in the sun before the measurement
was taken, or the engine-intake thermometer could be
positioned close to the ships engines. However, by tak-
ing a large number of observations we hope to reduce
random effects and determine important systematic er-
rors.

Section 2 describes the data sources used in the study.
In section 3 the model for systematic errors in the
bucket and engine-intake measurements is presented
and reduced to the special type of linear regression
problem where errors in two variables are correlated
with each other and a priori estimates of error covari-
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ance matrix elements have uncertainty in them. The
solution to this regression problem is given in the ap-
pendix. Section 4 presents the results, which are dis-
cussed in detail in section 5. Conclusions are drawn in
section 6.

2. Data

As in Part I and Kent and Challenor (2005, here-
after Part II), we use data from the International Com-
prehensive Ocean–Atmosphere Data Set (ICOADS;
Woodruff et al. 1998; Diaz et al. 2002) for the period of
1970–97 and metadata from the World Meteorological
Organization’s “List of selected, supplementary and
auxiliary ships” (e.g., WMO 1997; Kent et al. 2005,
manuscript submitted to J. Atmos. Oceanic Technol.,
hereafter KEN05). The use of this external metadata,
along with that contained within the ICOADS, extends
back to the 1970s—the period over which comparisons
of SSTs with different measurement methods can be
made (Part I). Bathymetry data from the ETOPO5
dataset (National Geophysical Data Center 1993; see
section 3d herein) were also used.

3. Analysis methods

a. Errors in VOS SST and their effect on analysis

VOS weather reports are known to contain errors,
both systematic (e.g., James and Fox 1972; Kent et al.
1993; Kent and Taylor 1997; Berry et al. 2004) and
random (e.g., Kent et al. 1999; Part II; Kent and Berry
2005). This has two implications for the analysis of bi-
ases. First, a large volume of data needs to be analyzed
to reduce the random component of the error, because
for individual observations the random error is likely to
be much larger than the bias. Walden (1966) noted “the
difference in measurement of the water temperatures
by the two methods is completely concealed by many
. . . large errors.” Second, care must be taken to ensure
that random or systematic errors do not create artificial
dependencies between analyzed variables. Note that
ships recruited by a particular country are likely to have
been issued with the same instruments and instructions
on how to take the observations. Disentangling physical
variability and systematic biases are especially difficult
when biases are parameterized as functions of variables
such as latent or sensible heat flux, which are expressed
as combinations of basic variables. To avoid these prob-
lems, here we propose an analysis method in which
errors in the different types of observations are param-
eterized in a very simple form. The model used neglects
the influence of wind speed, evaporation, and solar ra-

diation. It focuses on the biases in bucket SST measure-
ments resulting from air–sea temperature differences
and allows for a simple offset in engine-intake SSTs.

b. Physical effects responsible for bias in VOS sea
temperatures, model design, and sample selection

Part I summarizes the main sources of measurement
error in VOS SST. Here we wish to develop a model
that can account for these errors yet remain simple. We
only consider nighttime observations and therefore ne-
glect SST measurement errors related to solar radiation
(which are likely to mainly affect bucket-measured
SST). The most important remaining factors are heat
exchange with the atmosphere for the bucket SST and
a potential bias in engine-intake SST (Part I). There-
fore, our simple model includes the direct heat loss
from the bucket, parameterized using the air–sea tem-
perature difference. This direct heat loss in reality de-
pends on the relative wind speed at the time of sam-
pling (while the bucket and sample are hauled to the
deck), and a reduced relative wind speed during mea-
surement if the observation was made in a sheltered
location. Heat loss by evaporation is not explicitly in-
cluded; however, any element of evaporative heat loss
that is correlated with the air–sea temperature differ-
ence can be implicitly included by an increase in the
model coefficients.

There are several reasons keeping the model simple.
To include further processes in the analysis requires
more variables to be present within each report. For
example, to represent more completely the effects of
heat loss one needs to know the SST, air temperature,
relative wind speed (i.e., the ship speed, its course, and
the true wind speed and direction), and humidity. The
number of applicable reports, containing all required
variables, is small. The random error entering the
analysis in a complicated model is large, because more
variables are used.

There is a trade-off between the noise introduced
into the analysis by a poor representation of the physics
and that introduced by increased model complexity and
reduced amount of data. When a simple model, like the
one used in this study, gives physically reasonable re-
sults when applied to large quantities of data, a case of
reasonable balance between complexity and error has
been made. The application of these results to larger
datasets, however, should be treated with caution, be-
cause of the approximations, assumptions, and exclu-
sions made in their calculation.

We have not applied the model to daytime data for
several reasons. Daytime air temperatures are contami-
nated by solar radiation effects (e.g., Berry et al. 2004).
In fact, these air temperatures might need special cor-
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rection prior to their use in any SST correction scheme.
The water in the bucket experiences the true air tem-
perature immediately after sampling when it is remote
from the ship. However, once the bucket is hauled from
the sea to the deck the water in the bucket is affected by
the ship-modified air temperature. Restricting the
analysis to nighttime data makes the differences be-
tween the true and ship-modified air temperature
smaller.

During the day there may be large vertical gradients
in ocean temperature between the relatively shallow
bucket SST sample (typically taken at depths less than
1 m) and the depth of the engine-intake SST (typically
between 1 and 4 m for small vessels such as fishing
vessels, research ships, and Coast Guard ships, and be-
tween 5 and 15 m for larger ships; KEN05). We would
expect these gradients to be largest in the daytime and
at low wind speeds, so we have excluded these data
from the analysis. Even larger daytime errors can occur
if the bucket or sample are directly heated by solar
radiation.

c. Formulation of the model

Let T represent the true value of the SST, unaffected
by observational errors. Introduce Tb, Te, and Ta as
observations of bucket water temperature, engine-
intake water temperature, and air temperature , respec-
tively. The two SST measurements (Tb and Te) differ
because of a combination of random and systematic
errors. We assume Tb is in error by a fraction � of the
air–sea temperature difference and Te is on average in
error by a constant bias �:

Tb � T � ��Ta � T�, �1�

Te � T � �. �2�

These equations are too simple to be precisely true,
but we expect the errors in the model to be over-
whelmed by the random observational errors affecting
the actual measurements of Tb, Te, and Ta, and thus we
do not include explicit model error terms in (1) and (2).

The implicit assumption of the model (1)–(2) is that
� and � do not vary significantly within the sample.
Values of � falling outside the range of 0–1 are non-
physical. The value � � 0 means that the bucket tem-
perature is unaffected by heat exchange with the air,
and � � 1 means that Tb and Ta are equal within their
range of uncertainty. Physically � can take either sign;
positive � means that the engine-intake water is
warmer than the SST of the ocean.

By eliminating T between Eqs. (1) and (2), we obtain

Tb � Te � ��Ta � Te� � �� � 1��. �3�

Introducing

x � Ta � Te, y � Tb � Te, � � �� � 1��, �4�

we can rewrite (3) as a linear regression model

y � �x � �. �5�

Given observations (x°, y°) for many pairs (x, y), the
parameters � and 	 can be determined. Individual ob-
servations are affected by observational errors:

xo � x � �x, yo � y � �y. �6�

The regression results depend on the assumptions
that are made about the observational errors 
x and 
y.
Traditional types of regression account for cases where
one of the variables is error free (ordinary linear re-
gression) or where the error variances in each direction
are equal (known as orthogonal regression). More ad-
vanced regression techniques include modifications to
orthogonal regression where the variances of the error
in each direction are unequal but their ratio is fixed
(e.g., Draper and Smith 1998; Kent et al. 1998; Thomas
et al. 2005) or for the case where the error variances can
vary between individual points but are known (Boggs
and Rogers 1990; Press et al. 1992; Deming 1964). How-
ever, none of these regression methods allows for cor-
relation between 
x and 
y. In published studies such
errors are assumed independent. In our case, this cor-
relation is inherent because the observed values of both
x and y contain Te and its associated error. If the ob-
servational errors in Tb, Te, and Ta are 
b, 
e, and 
a,
respectively, from (4) and (6) we obtain

�x � �a � �e, �y � �b � �e.

We assume 
b, 
e, and 
a are uncorrelated with each
other and have variances cb, ce, and ca, respectively.
Thus,

��x
2� � ca � ce, ��y

2� � cb � ce, ��x�y� � ce. �7�

Furthermore, the parameters cb, ce, and ca in our re-
gression problem (5)–(7) are not known precisely; they
are estimated as intercepts in a semivariogram regres-
sion (Part II). Therefore, they can be naturally modeled
by normal distributions

cb  N�cb
o, sb�, ce  N�ce

o, se�, ca  N�ca
o, sa�, �8�

where co
b, co

e , and co
a are estimates of the semivariogram

intercepts for bucket, engine-intake, and air tempera-
ture measurements, respectively, which were calculated
a priori using the technique of Part II. The standard
errors sb, se, and sa, respectively, are calculated as part
of the semivariogram analysis.

The correlation between errors in x and y affects the
regression results dramatically and does not seem to
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have been discussed in the literature. Uncertainty in the
error variance parameters requires a Bayesian ap-
proach, that is, a study of the joint distribution of data
and parameters and obtaining parameter distributions
conditional on the data. We therefore present the
Bayesian analysis of the problem (4)–(8) in the appen-
dix, along with an algorithm for computing a maximum
likelihood approximation to the posterior probability
density distribution P(�, �) for the coefficients � and �
in the model (1)–(2), conditional on all available data.

d. Application to ICOADS

To implement the model described in section 3c, a
dataset of collocated bucket and engine-intake SSTs
taken along with air temperatures was required. For
this we used ICOADS to generate datasets of paired
reports within 100-km spatial separation and taken at
the same reporting hour. Our analysis only considers
reports from the North Atlantic located between 20°
and 50°N. ETOPO5 bathymetry (National Geophysical
Data Center 1993) is used to ensure that the data were
confined to the Atlantic. To improve the consistency of
the dataset, only reports from selected countries were
included in the analysis (the Netherlands, Norway, the
United States, the United Kingdom, France, Denmark,
Hong Kong, New Zealand, Canada, Belgium, South
Africa, Japan, Sweden, Germany, Israel, the former
Union of Soviet Socialist Republics, Russia, and Sin-
gapore). Any data for which no country could be iden-
tified, or reported by a country whose SSTs were
known to be erratic or were too few to analyze, were
excluded. We include only nighttime data and exclude
very high and very low wind speeds from our analysis.
We therefore attempt to minimize the effects of direct
solar heating and of the vertical stratification of the
surface ocean, which are not included in the model. It
should be noted that we have used the air temperature
from the ship in the pair reporting bucket SST rather
than that reporting engine-intake SST, because ships
using buckets to measure SST tend to report better-
quality air temperatures. Air temperature records on
these ships were better correlated with nearby engine-
intake SST measurements than were the air tempera-
tures from those same ships. This is thought to be be-
cause of the typical quality of measurements made by
VOS recruited by different countries. For example, in
the Voluntary Observing Ships’ Special Observing
Project for the North Atlantic (VSOP-NA) (Kent and
Taylor 1991) the screens on VOS recruited by the
United States tended to be more poorly exposed that
those on VOS recruited by the European contributors.
Excepting France, all of the European VOSs tended to
report bucket SST. So the VSOP-NA ships reporting

engine-intake SST (typically from the United States)
tended to have poorly exposed screens, which lead to
larger air temperature errors (Berry and Kent 2005).

In addition to this dataset two other paired datasets
of single type (bucket–bucket and engine intake–engine
intake) were also generated to allow the calculation of
random error variances co

b, co
e , and co

a and their respec-
tive uncertainties sb, se, and sa using the semivariogram
method (Lindau 1995; Kent et al. 1999; Part II). These
estimates and their uncertainties were used in our pro-
cedure via the definitions (8) and (7) in order to find
the values of parameters � and � of the models (1)–(2),
along with their uncertainties.

4. Results

The formalism of section 3c and the solution algo-
rithm (see the appendix) were applied to triplets of
observations Tb, Te, and Ta from paired reports
grouped in 5-yr periods between 1975 and 1994. Out-
side this period there were not enough paired reports
for calculations to be made. Maximum likelihood ap-
proximations of the joint posterior distribution function
(PDF) were calculated on a 121 � 121 grid covering
ranges of � from 0.01 to 0.5 and � from �0.3 to 0.3. The
results are summarized in Table 1, where statistical pa-
rameters for � and � correspond to their marginal dis-
tributions calculated using Eqs. (A7) and (A8).

We select the most data-rich period of 1980–84 in
order to illustrate the results in more detail. Figure 1
shows isolines for the joint posterior PDF of � and �,
computed using Eq. (A6), as well as individual distri-
butions for � and � [Eqs. (A7) and (A8)]. Figure 2
shows a scatter diagram of SST difference (bucket � en-
gine intake) versus air–sea temperature difference using
collocated data for the same period (1980–84). The scatter
in the data is large and the most obvious tendency in
the data is due to the strong intervariable error corre-
lation. This is expected, because both variables contain
the engine-intake SST, which has large observational
errors (Part II). The data therefore are scattered along
the 1:1 line of Fig. 2. Our analysis however reveals an-
other data connection, which cannot be explained by
the error structure of the data, and is represented by the
regression line (5). This line with parameters corre-
sponding to the maximum likelihood values of the pos-
terior distribution � � 0.12 and 	 � �(� � 1) � 0.15 �
(0.12 � 1) � �0.13 is shown in Fig. 2 by the solid line.
The shaded area around it corresponds to the 95%
probability area on the (�, �) plane shown in Fig. 1.

Values of � in each of the 5-yr subperiods in 1975–94
are quite similar (Table 1), but the value of � in the
latest period (1990–94) is significantly more negative
than in the previous periods. Figure 3 shows maximum
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likelihood estimates of � and � for all four periods,
together with their 67%, 95%, and 99% confidence ar-
eas. The uncertainties for � and � overlap significantly
for the periods from 1975 to 1989, but the period of
1990–94 is well separated from the earlier periods. The
latter period is also characterized by larger uncertain-
ties compared to the earlier periods, because it has
fewer data points (Table 1).

Figure 4 shows the results of this study applied to
ICOADS data in the 1980s for winter and summer pe-
riods using averaged values of � and � for the two

periods covering the 1980s in Table 1. Corrections were
computed using a monthly mean, 2° � 2° area data set
and were binned separately for reports made using
buckets and engine intakes. The corrections (�Tb � T
� Tb, �Te � T � Te) required for each dataset were
obtained from algebraic rearrangements of Eqs. (1)
and (2):

�Tb �
�

� � 1
�Ta � Tb�, �9�

�Te � ��. �10�

TABLE 1. Analysis results for 5-yr periods in the range of 1975–94. Maximum likelihood estimate (MLE) for the model parameters
� and � are shown as well as their 95% confidence intervals. The coefficient � gives the proportion of the air–sea temperature difference
appearing as an error in the bucket SST, and � gives the remaining mean offset between the bucket and engine-intake SST once the
bucket error has been accounted for. Estimates of the random measurement error variance computed a priori by the variogram method
(Part II) are shown �1 std dev of their uncertainty.

Period
No. of
points Random error variance estimates Slope for bucket bias � Bias in engine intake � (°C)

SST, (°C)2

Air temp (°C)2

ca � sa

Bucket
cb � sb

Engine intake
ce � se

MLE 95% confidence
interval

MLE 95% confidence
interval

1975–79 8410 1.56 � 0.63 2.69 � 0.56 0.69 � 0.25 0.16 0.14–0.18 0.09 0.03–0.15
1980–84 11 245 1.25 � 0.49 2.84 � 0.64 0.60 � 0.20 0.12 0.10–0.13 0.15 0.10–0.20
1985–89 11 073 1.25 � 0.31 2.74 � 0.53 0.68 � 0.15 0.12 0.10–0.14 0.18 0.14–0.23
1990–94 5122 1.41 � 0.43 3.02 � 0.76 0.65 � 0.24 0.13 0.10–0.16 �0.13 �0.20–�0.06

FIG. 1. One- and two-dimensional posterior distribution
functions for � and � calculated for 1980–84 dataset. (top
right) Isolines of joint posterior distribution P(�, �) and
the maximum likelihood point (solid circle). For easier in-
terpretation the isolines are labeled not by values of P but
by the probability with which their values are exceeded, for
example, the contour marked 99% surrounds the area with
total probability of 0.99. (top left) The posterior distribu-
tions for �; (bottom right) the posterior distribution for �.
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The correction for ICOADS nighttime data is then
calculated by Eqs. (9) and (10) for each 2° � 2° area
monthly mean grid box and the results are weighted by
the proportions of bucket and engine-intake SST in
each grid box. Because the measurement method for
some of the observations is unknown (Part I), two dif-
ferent correction fields have been calculated. In the
calculation for the upper panel (Figs. 4a and 4b) it is
assumed that all of the observations with unknown
measurement method were made using buckets; in the
calculation for the lower panel (Figs. 4c and 4d) it is
assumed that all of the observations with unknown
measurement method are engine-intake reports. Un-
certainties in model parameters have not been ac-
counted for in this simple comparison (but are shown in
Fig. 5). Figure 4 shows significant seasonal and regional
differences in the calculation. If the SST reports with
unknown measurement method are actually bucket re-
ports, then there are significant biases in regions of
strong SST gradients and hence air–sea temperature
differences. Figure 4a shows SST in the Gulf Stream
biased cold by several tenths of a degree Celsius in the

winter months and biased very slightly warm over a
more limited region in the summer (Fig. 4b). However,
if the reports with unknown method are actually en-
gine-intake reports then most of the North Atlantic re-
gion is biased slightly warm in both winter and summer
(Figs. 4c and 4d), but with a region of cold bias over the
Gulf Stream. This demonstrates the importance of re-
cording methods of observation and the difficulties as-
sociated with the interpretation of reports with an un-
known method. Figure 5a shows the annual cycle of the
correction shown in Fig. 4 averaged over the same
North Atlantic region. Our best estimate of the magni-
tude of the seasonal cycle in the modeled error is
0.08°C if reports of the unknown method are assumed
to be from engine intakes and 0.11°C if the reports of
the unknown method are from buckets.

The magnitude of the annual cycle in the difference
between nighttime gridded 2° � 2° area monthly mean
values of engine-intake and bucket SST is shown in Fig.
5b. The solid line shows the annual cycle of the differ-
ence between the datasets for the 1980s (similar to Fig.
6b in Part I but for nighttime data only). The dashed
line shows the difference between the corrections (�Tb

� �Te) for each dataset. The modeled correction dif-
ferences are slightly larger than the observed values for
most of the year. This difference between observed and
modeled values falls well within the estimated uncer-
tainty in the modeled correction because of the uncer-
tainty in the model parameters. The values in Fig. 5 are
calculated using all nighttime data for which a measure-
ment method is known and therefore include signifi-
cantly more data than was used in the derivation of the
model that required each observation to be matched
with a nearby observation made using the alternate
method and used only selected data from particular
countries.

5. Discussion

The model results confirm that modern insulated
buckets lose heat under normal environmental condi-
tions. This tendency has been shown previously. For
example, Walden (1966) found an increasing difference
between bucket and engine-intake SST with increasing
wind speed, which he attributed to evaporation from
the bucket or thermometer. Tauber (1969) measured
heat loss from the Crawford (1969) bucket. James and
Fox (1972) showed that bucket SSTs were colder than
engine-intake SSTs, particularly in winter. Differences
were greatest at night, at higher wind speeds, and if the
bucket observation was made on the windward side of
the ship. Parker (1985) and Folland et al. (1993) inter-
preted maps of SST difference in terms of heating and
cooling of the bucket observations, but were hampered

FIG. 2. Difference between collocated SSTs made using differ-
ent measurement methods (bucket � engine intake; °C) plotted
vs air–sea temperature difference (°C) for the period of 1980–84.
Collocations are within 100-km separation and at the same re-
porting hour. The air temperature is taken from the ship in the
pair reporting bucket SST. The thick regression line takes into
account correlation between errors in two variables and corre-
sponds to the maximum likelihood values for the regression pa-
rameters. The 95% confidence intervals for the regression line are
shown by shading. The tendency of data to fall along the dashed
(1:1) line is because of random errors in Te and is suppressed by
the analysis.
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by relatively poor knowledge of the measurement
method. Kent et al. (1991) showed that bucket SST was
cooler than engine-intake SST and became increasingly
cool as the sum of the estimated sensible and latent
heat fluxes increased. The present study of data col-
lected between 1975 and 1994 has shown that SST mea-
sured using buckets of modern design are also subject
to heat loss and that this effect can be detected in
ICOADS. In addition, a better knowledge of the SST
measurement method, resulting from the use of exter-
nal metadata, has allowed quantification of the effects
for a substantial number of VOSs, rather than for a
selected subset of ships. The second result is that en-
gine-intake SST may have been biased slightly warm in
the past, but more recent data seem to show a slightly
cold bias. Many previous studies have shown a warm
bias in engine-intake SST, usually of a larger magnitude
than that estimated in the present study (Saur 1963;
Walden 1966; Tauber 1969; James and Fox 1972; Kent
et al. 1993). James and Fox (1972) showed that the type
of thermometer is important, with warm biases of 0.1°C
for precision thermometers but significantly larger bi-
ases for other types. Saur (1963) found a 0.7°C warm
bias in engine-intake SST, but describes conditions of
thermometer exposure that would be unlikely on a
modern ship. See Part I for a summary of these studies.
It seems likely therefore that any warm bias that may

have existed has reduced over time because of better
instrumentation and awareness of sources of error in
the observation. It is also likely that biases in the engine
intake may have been overestimated if heat loss in the
buckets used for comparison was not taken into ac-
count. A cold bias in the engine-intake SST relative to
bucket SST adjusted for heat exchange could be ex-
plained if there is a vertical temperature gradient be-
tween the surface (sampled by the bucket) and at depth
(sampled by the engine intake).

The studies described above all used special compari-
son datasets. In addition, there are two major studies
that attempt to quantify and correct biases in SST data
based on climate datasets. FP95 corrected SST obser-
vations made prior to 1941. They describe physical
models for heat loss from uninsulated (canvas) and par-
tially insulated (wooden) buckets. These models ac-
count for direct heat loss, evaporative heat loss, long-
wave radiation, solar radiation, the difference between
the temperature of the water and the thermometer, and
water leakage. They note that many of the details re-
quired for the model are variable or unknown including
the size of buckets, the mix of bucket types, the length
of time of exposure, the speed of the ship, and the
instantaneous environmental conditions. A range of as-
sumptions is made for each of the unknowns to make a
set of model types. The required correction is then es-

FIG. 3. Maximum likelihood estimates of � and � for four analyzed 5-yr intervals, together
with their 67%, 95%, and 99% confidence areas.
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timated using a statistically fitted combination of these
model types, which optimize the consistency of the cli-
matological record using the period of 1951–80 as a
standard.

Smith and Reynolds (2002, hereafter SR02) took a
different approach to the same problem. They assumed
that large-scale air–sea interaction was the same for
earlier periods as for the period of 1968–97. Coeffi-
cients are then derived to correct the SST to match the
nighttime air–sea temperature difference of historical
periods to the modern data. The coefficients are
smoothed to allow small-scale variation in the air–sea
temperature differences. SR02 compare their correc-
tions to those of FP95 and conclude that the approxi-
mate size and spatial distribution of the corrections are
similar. Because the correction models are based on
very different assumptions, the difference between the
two corrections may give an idea of the uncertainty in
the correction. They further conclude that SST bias cor-
rections should be recalculated whenever substantial
additions are made to the historical data.

The bias correction of SR02 has the same form as
that developed in the present study. From their Fig. 4b
a value of � can be deduced to be about 0.2 in 1856,

rising to nearly 0.4 in 1941 when a dramatic change in
observation practice occurred (FP95). The rise in their
computed value of � between 1856 and 1941 results
from a shift from insulated wooden buckets to uninsu-
lated canvas buckets for practical reasons. We might
expect that the modern buckets would perform better
than the early buckets, so our smaller values of � rang-
ing from 0.12 � 0.02 to 0.16 � 0.02 are therefore con-
sistent with the results of the SR02 study obtained for
much earlier observations.

Figure 6 compares the nighttime bucket-only correc-
tion derived in the present study for the 1980s with the
all-hours correction of FP95 averaged over the period
of 1856–75. This period has been chosen for compari-
son because it was dominated by wooden buckets. The
wooden buckets are thought to be better insulated than
the canvas buckets that gradually replaced them be-
cause the wooden buckets were difficult to deploy and
it was easy to damage the bucket or to cause damage to
the ship. The magnitude of our correction (Fig. 6a) is
similar to that of FP95 (Fig. 6b) in this region for these
very different periods. Over much of the North Atlantic
the correction is 0.1°–0.15°C rising to a maximum of
over 0.35°C in the Gulf Stream region, which is

FIG. 4. Maps of North Atlantic region showing the value of the correction based on 1980s average values of � and � and calculated
using 2° � 2° area gridded monthly SST and air temperature data from ICOADS for the 1980s. A positive correction indicates that the
reported SST is too cold. Contours are in intervals of 0.05°C and a negative correction is indicated by a dotted line. (a) SST correction
(°C) for winter [December–February (DJF)] assuming observations of unknown type are made using buckets. (b) SST correction (°C)
for summer [June–August (JJA)] assuming observations of unknown type are made using buckets. (c) SST correction (°C) for winter
(DJF) assuming observations of unknown type are made using engine intakes. (d) SST correction (°C) for summer (JJA) assuming
observations of unknown type are made using engine intakes.
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slightly larger than that of the FP95 correction. The
pattern of the corrections predicted by SR02 and FP95
are slightly different—that of SR02 tends to follow con-
tours of sensible heat flux, while that of FP95 tends to
follow contours of latent heat flux (SR02). The correc-
tion from the present study depends on the air–sea tem-
perature difference and is therefore more similar to the
correction of SR02.

FP95 and SR02 both assumed that modern data were

unbiased, FP95 used the period from 1951 to 1980 as a
standard and SR02 used the period from 1968 to 1997.
Although these periods are not entirely covered by the
present study, this work and Part I suggests that an
additional correction may be needed for modern data.
The correction of the modern data used by FP95 and
SR02 as a comparison standard will cause a correspond-
ing increase in the correction required to the early data.

The 1980s is probably the period for which the small-

FIG. 5. (a) Average value of correction for the North Atlantic between 20° and 50°N for the
1980s calculated from separate monthly 2° � 2° area gridded datasets of bucket and engine-
intake SST and air temperature. The solid line is calculated with the assumption that the
reports of unknown method are distributed in the same proportion as those for which the
measurement method is known. Gray shading represents 95% uncertainty in the model pa-
rameters (Table 1). The three dot–dash lines (MLE and 95% range) are calculated with the
assumption that observations of unknown type are actually made using buckets, the dashed
lines with the assumption that observations of unknown type are actually made using engine
intakes. (b) Estimated difference between engine intake and bucket for the North Atlantic
between 20° and 50°N for the 1980s calculated from 2° � 2° area monthly mean gridded
datasets as in (a). Actual difference (solid line) and difference calculated using the model
parameters from Table 1 (dashed line). Gray shading represents 95% uncertainty in model
parameters taken from Table 1.
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est corrections are required. In the 1970s the biases in
the individual data sources are similar to those in the
1980s, but the balance of observational types is likely
different (Part I), with a higher percentage of bucket
reports, although for many observations the methods
used are unknown. In the 1980s the typically cold bias
in the bucket reports is offset by the warm bias in the
engine-intake reports, leaving small overall biases but
with some strong regional signals. In the 1970s it is
expected that a higher proportion of reports was made
using buckets and therefore the SST measurements
were biased colder than in the 1980s. In the 1990s the
proportion of engine-intake SST observations in-
creased, but their quality improved. The results of this
study suggest that in the 1990s SST observations may be
biased cold overall relative to the 1980s. Part I shows
the mean difference between SST derived from buckets
and that derived from engine intakes in the North At-

lantic (their Fig. 6a). It clearly shows that data from the
two sources agree best in the period after 1990. If we
believe that the bucket SST is typically biased cold over
the entire period shown, then this supports the conclu-
sion drawn from this study that engine-intake SST may,
at least in the period of 1990–97, be biased slightly cold.

Figures 4–6 apply the results of the model (1)–(2) to
separate bucket and engine-intake 2° � 2° area binned
monthly mean datasets derived from nighttime data in
ICOADS. However, these datasets contain a significant
amount of data not represented in our analysis, which
selected only data from certain recruiting countries and
restricted the wind speed range. Further, to be included
in the samples used to determine the model coefficients
(� and �) SST reports were required to have recorded
measurement method and to be paired with a nearby
report using the alternate method of measurement. We
cannot therefore be sure that the data we have used in

FIG. 6. Comparison of results of FP95 with those from the present study. (a) Correction to
insulated buckets derived in present study and applied to data from the 1980s using the same
data as in Fig. 5. Smoothing has been applied to the 2° � 2° data to aid the comparison with
(b). (b) Correction of FP95 on a 5° � 5° grid, averaged for the period dominated by insulated
wooden buckets (1856–75). Contours are in intervals of 0.05°C.
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our analysis is representative of that in ICOADS. How-
ever, the comparison of calculated and modeled differ-
ences between bucket- and engine-intake-gridded
datasets shows encouraging similarities (Fig. 5b). We
must always remember that corrections are not ex-
pected to necessarily improve an individual observa-
tion, but should, on average, improve the accuracy and
consistency of the dataset.

6. Conclusions

There are differences in VOS SST that can be attrib-
uted to differences in measurement method. Using a
combination of metadata within ICOADS and WMO
(1997), comparisons of different measurement methods
can be extended back to the 1970s.

It is important to properly account for errors, both
random and systematic, when comparing observations.
This paper describes a method that accounts for these
errors, but uses very simplistic physics. Therefore, to fit
the model, only a subset of data is used, comprising
nighttime reports excluding very low and very high
wind speeds and only from ships recruited by selected
countries. However, the results are consistent with ex-
pectations of the error derived from the literature, but
also indicate possible improvements in the engine-
intake SST over time.

The model results suggest that bucket reports of SST
made in the North Atlantic at nighttime and moderate
wind speeds may be biased by the order of 10% of the
air–sea temperature difference in the period of 1975–
94. Under similar conditions, the engine-intake SST
may be biased warm by 0.1°–0.2°C for the period be-
tween 1975 and 1989. After 1990 the model indicates
that engine-intake SST may be biased cold by a similar
amount. The timing of this possible transition from a
mean warm bias to a mean cold bias is not clear from
our analysis.

The need for corrections to the modern data implies
an increase in correction to those required for the ear-
lier data. The changing mix of bucket and engine-intake
reports in both time and space has important implica-
tions for the homogenization of SST. It would therefore
be desirable to correct modern data for biases using
metadata where available, and then repeat the FP95
and SR02 procedures to reference the early data to an
improved modern climatology.

The results of this study are tentative and more work
is required to confirm the results and extend conclu-
sions to cases excluded from the present analysis. We
have, however, gained some insight into the character-
istics of the individual observations. It is desirable that
a range of techniques is used to analyze the data, uti-

lizing both the individual observations and climatologi-
cal analyses. This will be an important future step to-
ward making corrections that can be applied to gridded
representations of observational datasets. This work
challenges the assumption that engine-intake SST is, on
average, biased warm. The presence of biases in obser-
vations measured using different measurement tech-
niques has important implications for the detection of
climate change as the mix of observational methods
continues to evolve.
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APPENDIX

Fitting a Straight Line When Errors in Two
Variables Are Intercorrelated and Have

Uncertainty in Their Covariance Parameters

a. Problem formulation

Our goal is to solve the problem (4)–(8), which is
formalized in the following way. There is a “true” linear
model,

y � �x � ��� � 1�, �A1�

which describes the population whose n samples (xi, yi)
are observed as (xo

i , yo
i ), with i � 1, . . . , n. Each ob-

served point (xo
i , yo

i ) corresponds to a point of true
values (xi, yi), lying precisely on the line (A1). The
observations differ from the true values by random
measurement errors 
x

i and 
y
i :

xi
o � xi � �i

x, yi
o � yi � �i

y, i � 1, . . . , n. �A2�

Model parameters � and � are to be estimated.
Errors for different points are independent from

each other, but each individual point errors in the x and
y directions are not independent. More precisely, the
vector of errors �i � (
x

i , 
y
i )T (superscript T denotes

transposition hereafter) for the ith observed point (xi,
yi) is assumed to have the bivariate Gaussian distribu-
tion

MARCH 2006 K E N T A N D K A P L A N 497



�iN�0, Ci�, �A3�

with (0, 0)T mean and covariance matrix

Ci � �ci
a � ci

e ci
e

ci
e ci

b � ci
e�

[cf. Eq. (7)]. Error parameters cb
i , ce

i , ca
i have the Gaus-

sian prior distributions

ci
bN�c0

b, sb�, ci
eN�c0

e, se�, ci
aN�c0

a, sa�.

b. Maximum likelihood approach

Based on (A1)–(A3), the likelihood function for the
observations (their conditional probability given all
other parameters) can be written as

L � �
i�1

n

p�xi
o, yi

o|xi, �, �, Ci�,

where

p�xi
o, yi

o|�, �, xi, Ci� �
1

2��detCi

exp��
1
2

�i
TCi

�1�i�,

with

�i � �xi � xi
o, �xi � ��� � 1� � yi

o�T.

Prior probability for the parameters �, �, xi, Ci, i � 1,
. . . , n is based on the given above Gaussian distribu-
tions for cb

i , ce
i , ca

i and noninformative priors for �, �, xi:

Ppr � �
i�1

n 1

�2��3�2sbsesa exp� �
1
2 ��ci

b � co
b

sb �2

� �ci
e � co

e

se �2

� �ci
a � co

a

sa �2��.

Multiplying the likelihood function by the prior prob-
ability, we obtain the joint probability distribution func-
tion of all parameters and observations:

P � LPpr � �
i�1

n

Pi

� �
i�1

n 1

�detCi

exp� �
1
2 ��i

TCi
�1�i � �ci

b � co
b

sb �2

� �ci
e � co

e

se �2

� �ci
a � co

a

sa �2��. �A4�

The maximum likelihood estimation of � and � re-
quires maximizing P over all the “nuisance” parameters
xi, cb

i , ce
i , ca

i , i � 1, . . . , n. The resulting function of � and

� approximates their posterior distribution in the vicin-
ity of the probability maximum (e.g., Sivia 1996).

c. Solution

Maximization of P over nuisance parameters can be
done independently for each factor Pi in Eq. (A4). Note
that each factor

Pi �
1

�detCi

exp� �
1
2 ��i

TCi
� 1�i � �ci

b � co
b

sb �2

� �ci
e � co

e

se �2

� �ci
a � co

a

sa �2�� �A5�

only depends on the parameters corresponding to the
ith observational point.

Because only the term �T
i C�1

i �i in Pi depends on xi,
the minimization of Pi over xi can be easily performed
analytically. Introducing

x	i � xi � xi
o, ri � yi

o � �xi
o � ��� � 1�,

h1 � �1
��, h2 � �0

1�
so that

�i � x	ih1 � rih2,

we rewrite

�i
TCi

�1�i � �h1
TCi

�1h1��x	i � ri�h1
TCi

�1h2���h1
TCi

�1h1��2

� ri
2��h2

TCi
�1h2� � �h1

TCi
�1h2�2��h1

TCi
�1h1��.

Obviously, value x�i � ri(hT
1 C�1

i h2)/(hT
1 C�1

i h1) corre-
sponding to the maximum likelihood estimate of xi

x̂i � xi
o � ri�h1

TCi
�1h2���h1

TCi
�1h1�

minimizes �i
TC�1

i �i. Note that

�h2
TCi

�1h2� � �h1
TCi

�1h2�2��h1
TCi

�1h1�

�
�h2

TCi
�1h2��h1

TCi
�1h1� � �h1

TCi
�1h2�2

h1
TCi

�1h1

�
det�HTCi

�1H�

h1
TCi

�1h1

�
1

detCi h1
TCi

�1h1

�
1

�ci
a � ci

e��2 � 2ci
e� � ci

b � ci
e ,

where we introduced H � [h1h2], and made use of
detH � 1, as well as

Ci
� 1 detCi � �ci

b � ci
e �ci

e

�ci
e ci

a � ci
e�.

Therefore,

min
xi

�i
TCi

� 1�i �
ri

2

�ci
a � ci

e��2 � 2ci
e� � ci

b � ci
e .
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Because the minimum of �i
TC�1

i �i in (A5) corre-
sponds to the maximum of Pi

max
xi

Pi �
1

�detCi

exp

� �
1
2 � ri

2

�ci
a � ci

e��2 � 2ci
e� � ci

b � ci
e

� �ci
b � co

b

sb �2

� �ci
e � co

e

se �2

� �ci
a � co

a

sa �2��.

Maximizing the latter over cb
i , ce

i , and ca
i appears ana-

lytically intractable, thus it is done numerically.
Rewrite the last equation as

max
xi

Pi � exp��Si�2�,

where

Si �
ri

2

�ci
a � ci

e��2 � 2ci
e� � ci

b � ci
e � �ci

b � co
b

sb �2

� �ci
e � co

e

se �2

� �ci
a � co

a

sa �2

� ln�ci
aci

b � ci
bci

e

� ci
eci

a�.

The maximum of Pi is achieved at the minimum of Si.
The latter can be easily minimized over cb

i , ce
i , and ca

i

using the gradient descent method. To facilitate the
computation of values of Pi maximized over these pa-
rameters, we observe that the minimum value of Si only
depends on � and r2

i , and that this functional depen-
dence is the same for all i. Therefore, we tabulate the
function

F ��, R� � min
cb,ce,ca

� R

�cb � ce��2 � 2ce� � ca � ce

� �cb � co
b

sb �2

� �ce � co
e

se �2

� �ca � co
a

sa �2

� ln�cacb � cbce � ceca��.

The gradient descent is used to find the minimum for
each given pair of � and R. For the applications pre-
sented in this work and summarized in Table 1, no more
than a few hundred iterations were necessary to deter-
mine the minimizing values of cb, ce, and ca with the
accuracy of 0.001(°C)2. When F is available, the mini-
mum value of Si can be found as

min
ci

b,ci
e,ci

a
Si � F ��, ri

2�.

Finally, the maximum likelihood approximation of
the joint posterior distribution for � and �, obtained as
a maximum of P over all nuisance parameters, is com-
puted by

P��, �� � exp��
1
2 �

i�1

n

F ��, �yi
o � �xi

o � ��� � 1��2�� .

�A6�

Maximum likelihood approximations of posterior
distributions for � and � can be found by further maxi-
mizations:

P��� � max
�

P��, ��, �A7�

P��� � max
�

P��, ��. �A8�

Modes of these distributions give maximum likeli-
hood estimates for � and �. The distributions (A7) and
(A8) are also used to obtain 95% confidence intervals
for these parameters reported in Table 1, along with
their maximum likelihood estimates.
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