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Existing historical records of sea-surface temperature extending back to the mid-
1800s are a valuable source of information about climate variability on interannual
and decadal time-scales. However, the temporal and spatial irregularity of these data
make them difficult to use in climate research, where gridded and complete data
fields are expected for both statistical analysis and forcing numerical models.

Infilling methods based on constraining the solution to the linear space spanned
by the leading eigenvectors of the global-scale covariance, otherwise known as
reduced-space methods, have proven very successful in creating gridded estimates
of sea-surface temperature. These methods are especially useful for infilling the vast
regions of unobserved ocean typical of the earliest segments of the data record.
Regional variability, on the other hand, is not well represented by these methods,
especially in data-poor regions. Here we present a method for augmenting the estab-
lished large-scale reconstruction methods with a statistical model of the mid-scale
variability. Using high quality sea-surface temperature data from the last 30 years
including satellite-derived records, we specify a spatially non-stationary, anisotropic
covariance model for the mid-scale sea-surface temperature variability. With the
parameters of the covariance model estimated from the modern record, historical
observations are used for conditioning the posterior distribution. Specifically, we
form the expected value and correlated uncertainty of the mid-scales as well as gen-
erating samples from the posterior.

While this work focuses on a limited domain in the midlatitude North Atlantic
Ocean, the method employed here can be extended to global reconstructions. Copy-
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1. Introduction

Prior to the current era of satellite data acquisition, the
main source of information on sea-surface temperatures
(SST) came from the logs of ships of opportunity. These

records stretch back to the mid 19th century, making them
a tantalizing source of information about climate variability
on interannual and decadal time-scales. However, the
temporal and spatial inhomogeneity of these data make them
difficult to use in standard statistical analysis procedures.
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Gridded fields of SST are also needed for initialization
and verification of ocean models and as time-dependent
boundary conditions in atmospheric models. As a result,
interpolation schemes for infilling these sparse data are
tremendously important in climate research.

One popular approach to the interpolation of historical
datasets is reduced-space estimation (Shriver and O’Brien,
1995; Smith et al., 1996; Kaplan et al., 1998, 2000; Rayner
et al., 2003). One of its advantages over more conventional
methods such as simple kriging (which uses a stationary,
localized covariance function) is its emphasis on the
reconstruction of the largest and most energetic spatial
scales over the entire domain of interest. This is a natural
advantage for modelling climate variables such as SST,
because the dynamics of the climate system often result in
global-scale coherency.

It is worth considering why reduced-space estimation has
been so useful in climate applications. For climate variables
that possess a large spatial dimension, the relative temporal
‘shortness’ of the reliable observational data record that
can be used for computing a sample covariance matrix often
leads to rank-deficiency. Assuming a lower dimensionality of
the system via truncation of the less energetic eigenvectors of
the covariance matrix can circumvent this problem. Another
advantage of reduced-space techniques becomes evident
when the data used for reconstruction are clustered in
limited areas, leaving large regions completely unobserved.
Under these circumstances, inference in the interiors of the
unsampled regions would be imprudent using methods that
rely solely on local spatial estimation methods.

The disadvantage of using a reduced-space technique for
interpolation is that there is no guarantee that the patterns
of covariability that dominate within smaller subregions of
the global domain will be well represented. The truncation
of trailing eigenvectors necessarily excludes some structures
that are better suited to local estimation techniques. Ideally, a
reconstruction methodology would draw from the strengths
of both types of interpolation, with the aim of representing
behaviour over a range of spatial scales.

We restrict our focus to the statistical modelling and
reconstruction of SST anomalies in the northern hemisphere
Atlantic Ocean. We present a method to augment an existing
historical SST reconstruction that uses a reduced-space
Kalman smoother (Kaplan et al., 1998) to capture what
we will term the ‘global-scale’ or ‘large-scale’ modes of
variability. The contribution of this work is to model and
reconstruct what we will term ‘mid-scale’ variability. For
the remainder of this article, we will use the terms global
and mid-scale to distinguish between variability captured by
the reduced-space technique and the more locally dominant
variability on which we are focused.

The separation into global and mid-scales is not based on
physical processes. No objective criteria for parsing between
these covariance models is used, nor do we mean to imply
that a given length-scale of covariability will be uniquely
contained in either model. In the context of this study,
mid-scales can be interpreted as the most dominant local
variability not captured by the globally-based reduced space
reconstruction.

Section 2 describes the historical temperature data,
extending back to 1850, that are used in this reconstruction.
Section 3 gives a brief description of the reduced-
space Kalman smoother that was used in the published
reconstruction of the large-scale SST anomalies. As we

discuss, there are subjective choices that go into reduced-
space techniques and our definition of mid-scales is
implicitly impacted by these. Given this caveat, it is
still instructive to note that the mid-scales tend to have
geographic coherency of the order of 500–1300 km.

There are two main areas of emphasis in this work. They
are (1) the statistical modelling of our prior knowledge
of the mid-scale variability not present in the established
reduced space reconstruction and (2) description of the mid-
scale reconstruction in terms of the mean, covariance and
samples from the posterior distribution. Section 4 outlines
the statistical procedure that we use to form the posterior
distribution for our mid-scale reconstruction. In section 5
we present our model for the covariance of the mid-scale
variability. We employ a novel covariance parametrization
developed by Paciorek and Schervish (2006) that allows
for non-stationarity in the length-scales and anisotropy of
the spatial correlation functions. This parametrization gives
our model the flexibility to capture geographic variation
in the underlying covariability of SST anomalies while still
ensuring a positive-definite covariance matrix defined over
the entire domain. This is a useful feature for analyses of SST
in the northern Atlantic Ocean basin, where the dominant
physical processes vary over the domain.

We verify the statistical model in section 6 and section
7 presents a selection of the resultant reconstructions.
Because the quantification and representation of uncertainty
has become an area of increased interest within the
climate research community (Rayner et al., 2009), we
pay special attention to the uncertainty estimates implied
by the posterior distribution. Specifically, we note the
temporal evolution of the uncertainty due to changes in
data availability through time and the spatial correlations
inherent in the posterior distributions. We conclude in
section 8 with a discussion of some of the broader issues
relevant to this work, some of its limitations and prospects
for its extension.

2. In situ SST observations from 1850–2008

Our reconstruction is based on the Hadley Centre
Sea-Surface Temperature, version 2(HadSST2) dataset of
monthly in situ SST anomalies from 1850–2008. HadSST2
is based on the International Comprehensive Ocean–At-
mosphere Data Set (ICOADS) archive of surface marine
observations collected from ships and buoys (Worley et al.,
2005). In HadSST2, the ICOADS SST data are subjected to
quality checks, corrected for systematic bias, converted to
climatological anomalies and averaged on to a 1◦ × 1◦ grid.∗
Note that HadSST2 is not an interpolated product, so grid
boxes where no data are present in the ICOADS database
remain empty. Rayner et al.(2006) document the extensive
work that was done to create the HadSST2 dataset, including
a detailed description of the bias-correction methods.

Because data in the early part of the record were primarily
collected on a volunteer basis by merchant ships, they tend
to be concentrated along trade routes, leaving large portions
of the ocean unobserved. While the number of records
generally increases in time, sociopolitical events such as the
two World Wars and the Great Depression are marked by
temporary decreases in the availability of data. However,

∗These data can be downloaded via the UK Met Office at
http://hadobs.metoffice.com/hadsst2/data/download.html
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the in situ coverage becomes dense in the second half of the
twentieth century and by the mid 1960s observations are
routinely available over nearly 90% of the North Atlantic
Ocean basin. The reader is referred to Worley et al.(2005)
and Rayner et al.(2006) for details on the time-evolving in
situ data coverage.

In general, uncertainty in the monthly gridbox-average
SST is dominated by instrumental error and error due to
undersampling of the subgrid-scale variability (Rayner et al.,
2006).† In Rayner et al.(2009), temporally and spatially dense
measurements from the Pathfinder satellite SST dataset
(version 5) as well as independent estimates of instrumental
error and small-scale variability (Kent and Challenor, 2006)
are used to calculate the variance of this uncertainty, s2

(see fig. 2d of Rayner et al., 2009). At every month j from
1850–2008, a vector of observational errors (defined for each
1◦ × 1◦ grid box i where observations exist) is assumed to
have a multivariate normal distribution:

ε ∼ N(0,R). (1)

where R is a diagonal matrix with elements s2
i / min(ni,j, 60).

The temporal and spatial non-stationarity in the data error
stems from both the geographical variations in s2

i and the
irregularity of the number of samples ni,j collated within
each grid box. The number of degrees of freedom is capped
at 60 as a heuristic way to account for our understanding that
not all observations in a single grid box will be statistically
independent (Kaplan et al., 1997).

3. Large-scale reconstruction using the reduced-space
Kalman smoother

Central to all reduced-space estimation techniques is the idea
that the global covariability can be adequately expressed in
terms of a limited number of spatial basis functions. If
these basis functions are found as the leading eigenvectors
of a sample covariance matrix, these basis functions are
called empirical orthogonal functions (EOFs). Typically, the
number of EOFs retained in a reconstruction is far fewer than
the spatial dimension of the state variable. The exact number
of basis functions retained is a subjective compromise
between the desire to capture a large portion of the variability
in the system and the desire to drastically reduce the size of
the problem. At the very least, the truncation must be severe
enough to eliminate any rank-deficiency in the full-space
sample covariance matrix.

In this framework, the reduced-space expression of a state
vector of global SST anomalies can be written as

ẑ = Eα. (2)

Here E is an orthogonal matrix, the columns of which
are the EOFs, and α is a vector of weighting coefficients.
In reduced-space estimation it is generally assumed that
the EOFs are fixed and α is the probabilistic variable of
interest. Well-known methods of data assimilation (Kalman
filtering, smoothing, variational methods, etc. ) can be used
to construct a posterior distribution of α.

The historical SST reconstruction that serves as the
large-scale base for our mid-scale features is the reduced-
space Kalman smoother described in Kaplan et al. (1997,

†Although we do not include them here, there are also uncertainties that
stem from errors in the bias-correction algorithms.

1998). Hereafter we will refer to this reconstruction as the
KaplanSST. Since the details of the KaplanSST are described
elsewhere in the literature and are not the focus of this work,
we provide only a brief description below.

The KaplanSST is a near-global SST reconstruction
wherein the EOFs are computed from the global sample
covariance and the reconstructions make use of observations
from all ocean basins. The version of this reconstruction
used here is based on the 1◦ × 1◦ HadSST2 dataset of
in situ SST observations described in the previous section.
The analysis is done for SST anomalies, i.e. deviations of
full SST values from their monthly climatological values.
The climatology is that of Smith and Reynolds (1998) for
the 1961–1990 period. SST anomalies from the relatively
data-rich period 1951–2007 were used for calculating the
sample covariance matrix from which the orthogonal basis
functions were computed and the data from 1850–2008 were
used as the observations on which posterior distributions
are conditioned. Consistent with Kaplan et al. (1998), only
80 global EOFs are retained. The 1◦ × 1◦ HadSST2 is area
averaged onto a 5◦ × 5◦ grid prior to computing EOFs and
generating the reconstruction. The resulting reconstruction
is then bilinearly interpolated on to a 1◦ × 1◦ grid. Unlike
Kaplan et al. (1997, 1998), where only the expected value
of the reduced-space analysis was computed, here the
posterior covariance of the reduced space is also estimated
as described in Kaplan et al. (2000). From the KaplanSST,
then, we have a sequence of global SST anomalies (along
with their corresponding error covariance) at each month
from 1850–2008. By construction, the KaplanSST estimates
only large-scale, globally relevant modes of variability.

As pointed out by Dommenget (2007), describing the
covariability of a system in terms of a set of EOFs is
purely a statistical convenience. It does not imply that
the underlying covariance could not also be described
using another statistical or physical model. Reduced-space
techniques are useful not because they are unique models
of the covariance but because they are a parsimonious way
of describing (and ranking in terms of importance) the
types of variability that are typically attractive to the climate
science community. However, there can be coherent scales
not captured by the reduced-space reconstruction that have
regional importance. These scales can be modelled using
localized covariance models, as described in the following
sections.

4. Framework for the reconstruction of the mid-scales

Because the SST anomalies are the sum of the variability
on global scales and mid-scales, the most complete
reconstruction procedure considers the joint distribution
of these processes. At each month, we can define a joint
state as the large-scale SST anomalies in reduced space (α)
appended with mid-scale SST anomalies (z′) in full grid
space:

Z =
[

α

z′

]
∼ N

([
0
0

]
,

[
λ 0
0 C

])
. (3)

The matrices λ and C are the specified prior covariances on
large and mid-scales (respectively). The observations can be
written as

y = H(Eα + z′) + ε, (4)
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where y is a vector of the HadSST2 observations at a given
month and ε is the corresponding vector of measurement
error (both described in section 2). The columns of the
matrix E correspond to the basis functions of the KaplanSST
that have been bilinearly interpolated on to a 1◦ × 1◦ grid.
H is a submatrix of the identity matrix that maps from the
1◦ × 1◦ geographical state space of z to the observational
space of y.

Although the large and mid-scales are assumed indepen-
dent in the prior (3), once Z is conditioned on y they are
no longer independent. We do not show this here, but it
can easily be seen by forming the joint posterior p(Z|y).
This links the problem of reconstructing the mid-scales with
the problem of large-scale reconstruction. This combina-
tion increases the effective dimension of the problem from
O(102), which represents the number of EOFs retained in
the KaplanSST analysis, toO(104), the number of grid points
in the geographical state space. The assumed time autocor-
relation in α further exacerbates this issue because smoother
solutions are naturally more computationally demanding
than sequential filters.

An alternative to forming the joint distribution is to
recognize that the variable of interest is actually the sum of
the large and mid-scales (z = Eα + z′), which can be written

p(z|y) =
∫

p(z|α, y) p(α|y) dα. (5)

The marginal posterior probability p(α|y) can be approxi-
mated by the reduced-space KaplanSST solution, which is
multivariate normal (in time and space) with mean µα and
covariance Pα . In forming the marginal distribution of α,
the KaplanSST assumed that all variability unresolved by the
leading EOFs was uncorrelated. We show in the next section
that in fact there are significant correlation structures, but
because the structures in z′ are considerably smaller in scale
than the dominant global patterns in ẑ this is a tolerable
approximation.

Using the KaplanSST distribution as a close approxima-
tion for the marginal posterior, the solution becomes

p(z|y) ≈
∫

p(z|α, y) N(α|µα , Pα) dα. (6)

This hierarchical form allows us to focus on forming only
the first factor in the integral (with the understanding that
samples can be drawn from the second). Applying Bayes’
theorem, we can write

p(z|α, y) ∝ p(y|z, α) p(z|α), (7)

where the first term on the right-hand side is a Gaussian
likelihood and the second term is a Gaussian prior
distribution with mean α and covariance of the mid-scales
(C). We can then recognize p(z|α, y) as also being normally
distributed, with expected value

µz|α = Eα + CHT(HCHT + R)−1(y − HEα) (8)

and covariance

Pz|α = C − CHT(HCHT + R)−1HC. (9)

The full solution given in (6) is then simply the integral over
the product of two Gaussians:

p(z|y) ≈
∫

p(z|α, y) N(α|µα , Pα) dα

=
∫

N(z|µz|α , Pz|α) N(α|µα , Pα) dα. (10)

Samples from this distribution can be formed following
a simple Monte Carlo approach: given a sample from
N(α|µα , Pα), we can draw from N(z|µz|α , Pz|α). This is
a particularly attractive tactic, because only the expected
value µz|α depends on α and the covariance Pz|α need only
be computed once regardless of the number of samples
needed.

It is also possible to write the full solution by performing
the integral over α. We show in Appendix A that there is a
compact matrix form for this integral. However, while it is
easy to write, it is not a matrix that one would like to form
explicitly because of its full rank in time and state space. We
draw on the result that the expected value of the full solution
is

µz = Eµα + CHT(HCHT + R)−1(y − HEµα). (11)

Defining a data residual term,

δy ≡ y − HEµα , (12)

we can write the mid-scale portion of the expected value as

µz′ = µz − Eµα = CHT(HCHT + R)−1δy. (13)

To demonstrate the type of correlated uncertainty associated
with the mid-scales, we focus in the remainder of this
article on only the conditional covariance Pz|α given by
(9). It is worthwhile to keep in mind, however, that the
full uncertainty, as shown in Appendix A, contains the
KaplanSST posterior uncertainty (Pα) as well as terms
involving the interaction between large and mid-scales.

In the following section we describe our model for the
prior covariance matrix C. Once this mid-scale covariance
matrix has been formed, it is straightforward (albeit
computationally expensive) to generate samples from the
posterior distribution defined by (9) and (13).

5. Specification of the prior covariance

5.1. A non-stationary model of the covariance

Although commonly used in spatial statistics, the Matérn
class of covariance functions is less often encountered in
geoscience literature. We will briefly describe its functional
form and the extension of this form to a non-stationary
covariance matrix.

The stationary, isotropic form of the Handcock-
–Stein–Wallis parametrization of the Matérn function
(Handcock and Stein, 1993; Handcock and Wallis, 1994)
is

c(d) = σ 2 1

�(ν)2ν−1

(
2
√

ν
d

ρ

)ν

Kν

(
2
√

ν
d

ρ

)
,

ρ > 0; ν > 0, (14)
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where σ 2 is the variance of the process, d is a scalar distance,
ρ is a spatial length-scale (also called the range parameter),
� is the gamma function and Kν(·) is the modified Bessel
function of the second kind. The shape parameter ν allows
the covariance function to range from the exponential form

e−√
2d/ρ at ν = 0.5 to the squared exponential (or Gaussian)

form e−d2/ρ2
as ν approaches infinity.

In the context of optimal interpolation with geophysical
data, the Matérn covariance function is attractive primarily
because the parameter ν allows for flexibility in the spatial
smoothness of the process. It is also the case that infinitely
differentiable correlation functions, such as the Gaussian
form, can result in ill-conditioned covariance matrices.
Thus, from an engineering perspective, the use of a function
that is less smooth than the Gaussian form can result in
better numerical stability during the computation of the
posterior moments.

We can generalize to the anisotropic form of the Matérn
covariance by using the so-called Mahalanobis distance,

τ (x, x′) =
√

(x − x′)T
−1(x − x′), (15)

in lieu of d/ρ in (14). Here x and x′ are geographical locations
in our spatial domain. The kernel 
 acts essentially as the
square of a deformation and rotation matrix,


=
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
L2

x 0
0 L2

y

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]T

,

(16)

where Lx and Ly are (respectively) the zonal and meridional
length-scales. The local angle of rotation relative to the zonal
axis is given by θ . The kernal inverse within the Mahalanobis
distance can be interpreted as the transformation of an
absolute Euclidean distance to a distance measured relative
to the rotated axis and anisotropic length-scales.

Paciorek and Schervish (2006) derive a non-stationary
version of the anisotropic Matérn covariance that essentially
knits together locally estimated kernels 
 to form a valid
covariance matrix:

C(x, x′) = σσ ′

�(ν)2ν−1

|
|1/4|
′|1/4

|
̄|1/2

(
2τ̄

√
ν
)ν

Kν

(
2τ̄

√
ν
)
.

(17)

Here, σ and σ ′ are the standard deviations at x and x′ and
τ̄ is the Mahalanobis distance based on the average of the
kernels centred at x and x′:

τ̄ =
√

(x − x′)T
̄−1(x − x′) ; 
̄ = 1

2
(
 + 
′). (18)

In order to construct the full covariance matrix, we must
estimate a global smoothness parameter ν and, at each
geographical point, obtain the variance of the process (σ 2)
and the transformation kernel 
.

5.2. Using modern data to obtain samples of the mid-scale
variability

In contrast to the historical in situ data coverage, obser-
vations of SST became abundant in the last quarter of the
20th century. The National Centers for Environmental Pre-
diction(NCEP) optimal interpolation analysis of Reynolds

and Smith (Reynolds et al., 2002, hereafter NCEP OI)
incorporates both in situ observations (from ships, moored
buoys and drifting buoys) and satellite data. Satellite data
coverage allows for the resolution of small-scale features
(such as midlatitude eddies), while in situ data are used
to correct for bias in the satellite-derived temperatures.
Because the NCEP OI is an analyzed data product, there is a
preferred correlation length-scale implicit in the SST field.
As discussed in Reynolds et al.(2002), there is an assumed
Gaussian background spatial correlation with an e-folding
distance of approximately 700 km. However, dense satellite
data coverage tends to dominate the solution, making it rel-
atively insensitive to the imposed background length-scale.
The NCEP OI is available as monthly SST anomalies on a
1◦ × 1◦ grid from 1981 to the present. The reader is referred
to Reynolds et al.(2002) for a full discussion of the NCEP
OI data product and the observations used in their analysis.

We can assume that the NCEP OI contains both globally
energetic patterns of variability and smaller scale patterns of
local covariability. To determine the portion of the NCEP
OI that corresponds to the global patterns of variability in
the orthogonal basis functions (E), we can write the NCEP
OI data as

yoi = Eα + ε. (19)

Exploiting the orthogonality of E , we can write the
maximum-likelihood estimate of α as

αoi = ETyoi. (20)

We then define the residual of the reduced-space
representation as

yr ≡ yoi − Eαoi. (21)

These residuals comprise a new dataset for estimating the
covariance of the mid-scales.

5.3. Pseudo-likelihood estimation of the mid-scale covariance
parameters

The NCEP OI mid-scale data can be modelled as

yr ∼ N(0, C + Roi), (22)

where Roi is a diagonal matrix of the uncertainty in
the NCEP OI mid-scale data (obtained through personal
communication with Richard Reynolds) and C is the mid-
scale covariance matrix parametrized by the Matérn form.

The spatial scale of this problem is such that it is
impractical to estimate all the parameters of the mid-
scale covariance matrix simultaneously. (In the northern
hemisphere Atlantic, this would amount to a nonlinear
minimization over ≈ 17 000 correlated variables). Instead,
we independently model the kernel matrices in the vicinity
of each point, knit them together to form a single, global
correlation matrix (as described in section 5.1) and then
estimate the variance of this process with this correlation
matrix. We settle on this tactic with the knowledge that
mis-specification of the correlation matrix resulting from
local estimation of the kernels will result in a reduction
of the variance explained by this statistical model. While
suboptimal, this approach provides a tractable alternative to
joint estimation of all the parameters. Appendix B describes
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(a) (b)

(c) (d)

Figure 1. (a) Geographical variation in the zonal length-scale. Contour intervals are at 200 km (thick line is 1000 km). (b) Geographical variation in the
meridional length-scale. Contour intervals are at 100 km (thick line is 500 km). (c) Rotation angle measured from an eastward-pointing axis. Contour
intervals are at 10◦, and the thick line is 0◦. (d) Local standard deviation. Intervals are 0.1◦C and the thick line is at 0.4◦C.
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Figure 2. Contours of the correlation function at select geographical locations. This is a geometric representation of the spatial parameters from Figure 1.
The smallest contour is at 0.1 and the interval of increase is 0.1.
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Figure 3. The empirical probability distribution of the the absolute
differences between the posterior prediction and the withheld observations
for the non-stationary covariance model (black solid), stationary covariance
model (dashed black line) and baseline solution without the mid-scales
(red line).

how we determine all the parameters needed to form the
mid-scale covariance matrix C.

The panels of Figure 1 show the spatial variation of the
parameters of the correlation function as well as the standard
deviation of the process. The ellipses in Figure 2 give a
geometric representation of this same correlation model
at selected geographic locations. The smallest decorrelation
scales and the largest variances correspond to the path of the
Gulf Stream as it separates from the east coast of the United
States and crosses the basin toward Europe. The southward
return-flow region of the Canary Current down the coast of
north Africa is also a notable region of increased variance
and decreased correlation length-scales. These are regions of
high mesoscale SST variability that arise from meanders of
the swift currents and eddies that shed at their boundaries.
The largest scales are in the ocean interior, in the relatively
quiescent centre of the subtropical gyre.

6. Verification

To verify the reconstruction, we withheld observations for
comparison. Every month from 1950 to 1974 we withheld
10 randomly chosen observations from the HadSST2 dataset
in the Northern Hemisphere (NH) Atlantic (3000 in total).
We chose this part of the record because it is the most
well observed segment not overlapping with the NCEP OI
period. We then reconstructed the mid-scale SST using
our non-stationary covariance model and compared results
to the withheld observations. As the simplest baseline for
comparison, we use the large-scale solution without any
mid-scale reconstruction (i.e. z′ = 0).

Empirical distributions of the absolute difference between
the 3000 observation values and the predicted expected value
are shown Figure 3. The average correction imparted by the
mid-scale reconstruction is about 0.11◦C and 25% of the
locations used in the verification show an improvement
of over 0.25◦C. Furthermore, we expect that the mid-scale
reconstruction is most important in eddying regions like
the Gulf Stream (30◦N–50◦N, 75◦W–45◦W). Corrections to
withheld observations in the Gulf Stream region tend to be

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25
non−stationary covariance
stationary covariance
no mid−scales

Figure 4. Same as Figure 3 except that empirical distributions were
computed only for withheld observations in the Gulf Stream region.

larger, averaging 0.2◦C with 40% of the instances showing
improvement of over 0.25◦C.

We also consider how well this non-stationary covariance
model performs relative to a more traditional stationary
statistical model for the mid-scale variability. For this
test, we repeated the reconstruction with the same
withheld observations but using spatially stationary zonal
and meridional length-scales Lx = 1000 km and Ly =
500 km, while retaining the non-stationary prior variance.‡

Compared with this more sophisticated baseline solution,
the results are more subtle. The stationary reconstruction
is shown by the black dashed lines in Figures 3 and 4.
Over the entire domain, we see only a small reduction
in absolute difference from using the non-stationary
covariance model. In the Gulf Stream region, however,
the improvement is more evident, albeit with a subtle mean
improvement of 0.07◦C and about 5% of the locations
showing improvements greater than 0.25◦C.

It is important to characterize the types of errors we
expect to result from using a stationary covariance model
when the underlying stochastic process is, in fact, non-
stationary. Let us focus again on the Gulf Stream, because
it is a high-variance region. There the stationary covariance
model overestimates the length-scales. This type of mis-
specification effectively reduces the resulting degrees of
freedom in the system and erroneously dampens both
the pointwise uncertainty in the posterior and the spatio-
temporal variance of the expected value. In our experiment,
for example, we had a 56% reduction in the average
pointwise uncertainty variance in the Gulf Stream region
when the stationary model was used and a 30% reduction
in the spatio-temporal variance of the expected value.
Naturally, there was also a reduction in the spatial gradients
of samples drawn from the posterior. These kinds of errors
are important in applications in which SST analyses are
used to give boundary conditions for atmospheric models,
because in frontal zones the atmosphere is responsive to the
Laplacian of the SST (Minobe et al., 2008).

‡These length-scales were chosen to be close to the grid-point average
over the domain. The covariance function remained the Matérn form.
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(a)

(b)

(c)

Figure 5. The first column is the expected value of the SST anomaly from the KaplanSST reduced-space optimal smoother on three dates. The second
column shows the expected value of the mid-scale SST modelled in this work, and their sum is shown in the third panel. Units are in ◦C. Thick contour
lines surround regions of absolute value greater than 0.5◦C.

7. Ensemble reconstructions of the mid-scale SST

Here we present a selection of the resultant reconstructions
of the non-stationary mid-scale SST. Figure 5 qualitatively
illustrates the relative importance of including the mid-scales
in the SST analysis. For the month of January in 1850, 1942
and 1980, the first column shows the SST anomaly from the
KaplanSST reduced-space Kalman smoother. The second
column shows the expected value of the mid-scale SST
modelled in this work, and their sum is shown in the third
panel. While the overall signal is dominated by the large-
scale KaplanSST, the mid-scale reconstruction provides a
significant higher resolution correction to the analysis.

Over the entire time period of the reconstruction, the
spatio-temporal variability (in the expected value of SST
anomaly) in the NH Altantic is increased by ∼60% due
to the explicit modelling of the mid-scales. The variance
spectrum of the SST anomaly with and without the inclusion
of mid-scales helps us to quantify the relative importance
of modelling these scales (Figure 6). This spectrum is
calculated from the eigenvalues of the long-term covariance
of NH Atlantic SST with and without mid-scales (circles
versus dots, respectively). We computed the eigenvalues of
this spectrum only for the NH Atlantic; they are not the
eigenvalues of the global KaplanSST analysis. In general, the
leading eigenvalues are associated with larger scale structures
and the trailing eigenvalues are structurally smaller. We see
that including the mid-scales in the analysis adds power to
the trailing modes of the spectrum. This flattening of the
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Figure 6. Spectrum of the eigenvalues of the long-term covariance of the
reconstruction in the Northern Hemisphere Atlantic. Note that a log axis is
used to aid in viewing the spectra. The line with small dots is the spectrum
of the KaplanSST, the circles indicate the spectrum of the reconstruction
expected value including the mid-scales. The line with plus symbols is the
mean spectrum calculated from 20 samples of the posterior distribution,
approximating the ‘true’ spectrum. Each spectrum is scaled by the total
variance in the KaplanSST+mid-scales reconstruction.

spectrum is due to the reintroduction of spatial scales that
are not captured by reduced-space reconstruction methods.

The mid-scale reconstruction adds variance across the
entire spectrum. In particular, there is a very modest, but
detectible, contribution to the leading few modes. Figure 7
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Figure 7. As in Figure 6, the line with small dots is the spectrum of the
KaplanSST and the circles indicate the spectrum of the reconstruction
expected value including the mid-scales. Here the total reconstructed
spectrum (KaplanSST+mid-scales) has been projected on to the eigenvector
basis from the KaplanSST.

shows a similar spectrum, but with the reconstructions
projected on to the orthogonal structures of the KaplanSST.
Here we see unequivocally that the mid-scale reconstruction
has a projection on to the global solution. This is not
unexpected. Independence in the prior does not guarantee
independence in the posterior. It simply reinforces the idea
that a joint modelling of the large and mid-scales is an
important next step.

Figure 8 illustrates the long-term mean in large and mid-
scale solution components. The mid-scale reconstruction
introduces a cooling in the temperatures along the northern
edge of the Gulf Stream region, along with a smaller warming
along the southern edge. This is a course resolution of the
Gulf Stream pathway. Figure 9 shows a time series of the
reconstruction at 50◦W and 43◦N, a locally cool pivot
point where the Gulf Stream turns northward to form the
North Atlantic Drift. We see that this feature is temporally
consistent, emerging in the late 1800s and persisting through
most of the record. The grey shadow in Figure 9 is the
posterior uncertainty bound (95% confidence intervals).
Since the prior covariance is temporally stationary, the
fluctuations in the posterior uncertainty are driven by the
availability (or absence) of in situ HADSST2 data near this
location.

A close examination of this SST anomaly time series in the
context of its uncertainty reveals a slightly different story.
There is little evidence, in fact, that this cool feature was ever
absent. The lack of observations leads to a large uncertainty
during the preceding three-quarters of a century.

Of course, pointwise uncertainties are only part of the
story. The posterior uncertainties in the mid-scales are
correlated in space. We illustrate these covariance structures
in Figures 10–12. For January in 1850, 1942 and 1980,
we have contoured the expected value and pointwise
uncertainty of the mid-scale SST anomaly (top panels).
In the remaining four panels we present a sample drawn
from the full posterior uncertainty distribution. The black
dots on the maps are points where in situ observations were
available. As we expect, the realizations tend to be most
similar (to each other and to the expected value) when the
ocean is densely observed. In the early record, as well as
during times of changing shipping routes (such as the early
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Figure 8. Top panel: the long-term mean (1850–2008) of the KaplanSST.
Middle panel: long-term mean of the expected value of the reconstructed
mid-scales. Bottom panel: the long-term mean of the KaplanSST plus
mid-scales. Units are ◦C. Thick contour lines surround regions of absolute
value greater than 0.2◦C. Note the time mean structures in the Gulf Stream
regions resulting from the mid-scale reconstruction.

1940s), we can see that the ensemble members cluster in
agreement at the observation locations. We can also see the
underlying covariance structures that were specified in the
prior covariance are emerging in the posterior.

To demonstrate the utility of representing the reconstruc-
tions via an ensemble of realizations, we can compute the
long-term covariance eigenspectrum multiple times from
samples taken from the posterior distribution. The line
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Figure 9. Time series of the SST anomaly at 50◦ W, 43◦ N (a point in the Gulf Stream region). The black line is the expected value of the KaplanSST +
mid-scale reconstruction, with grey shading showing the 95% confidence intervals of the mid-scale only. The green line shows the time series from just
the KaplanSST. Note the long-term cooling correction implied by the additional reconstruction of mid-scale variability in the Gulf Stream region.

marked with ‘+’ in Figure 6 shows the average eigenspec-
trum for 20 realizations. This increase (∼10%) reflects the
additional variability in the SST due to posterior uncertainty
in the mid-scales. This additional variability will make up
an even greater percentage in the early part of the record,
when observations are scarce. Variability estimated from
many individual realizations approximates the ‘true’ vari-
ability, whereas variability found from the expected value
will always be biased low.

8. Discussion

This work presents the statistical modelling and reconstruc-
tion of mid-scale SST anomalies in the NH Atlantic. We use
a recently developed statistical parametrization by Paciorek
and Schervish (2006) for the prior covariance that allows
for non-stationarity in the anisotropic correlation length-
scales. The benefit of this approach is that it allows us to
form a positive-definite posterior uncertainty covariance
from which samples can be easily drawn. The correlated
error structures in the prior naturally emerge in realizations
drawn from the posterior.

Because this work is focused on the modelling and
reconstruction of the mid-scale variability, we have not
combined their estimates with the posterior distribution of
the KaplanSST. A complete modelling of the SST anomaly
would treat the global and mid-scales as a joint distribution

because, while these scales can be assumed independent in
the prior, they are correlated in the posterior. However,
one might want to avoid joint modelling for a number
of reasons. Primary among them is that the large-scale
part of the solution is global in size and autoregressive
in time. Dimensional reduction is thus computationally
necessary for a tractable solution. In subdomains where we
also want to compute the mid-scale part, such as the NH
Atlantic basin considered here, it is helpful to draw on the
results of the large-scale reconstruction while avoiding a
global multiscale reconstruction. The hierarchical form of
the full solution shown in section 4 suggests a simple Monte
Carlo approach to drawing samples from the full large and
mid-scale solution. This is a fruitful direction for future
work.

Lorenc (1986) notes that geophysical fluids exhibit
energy over a wide range of spatial scales. It is not
altogether clear how these scales should be separated.
We have implicitly assumed in this study that global
scales of covariability can be captured via a reduced-
space representation and the remaining variability can be
modelled with a locally supported covariance. However,
even within this framework it is clear that there are multiple
scales present at this mid-level too. We can interpret our
non-stationary parametrization as an attempt to select
for correlation structures that are locally dominant. Even
with this simplified description, mid-scale reconstructions

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 234–248 (2012)



244 A. R. Karspeck et al.

90°W 70°W 50°W 30°W 10°W
0°

20°N

40°N

60°N

90°W 70°W 50°W 30°W 10°W
0°

20°N

40°N

60°N

90°W 70°W 50°W 30°W 10°W
0°

20°N

40°N

60°N

90°W 70°W 50°W 30°W 10°W
0°

20°N

40°N

60°N

90°W 70°W 50°W 30°W 10°W
0°

20°N

40°N

60°N

90°W 70°W 50°W 30°W 10°W
0°

20°N

40°N

60°N
Expected Value

Jan 1850

Realization 1

Realization 3

Realization 2

 

 

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

Realization 4

Standard Deviation

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

(b)

(c)

Figure 10. Expected value, standard deviation and four realizations from the posterior distribution of the mid-scale SST in January of 1850. Units are
◦C. Each black dot indicates the existence of at least one in situ observation. Thick contour lines in expected value and realization plots surround regions
of absolute value of greater than 0.5◦C. Thick contour lines in the standard deviation plot surround regions of greater than 0.4◦C.

contribute significantly to both the long-term mean (Figures
8 and 9) and the long-term covariance spectrum (Figure 7).

For problems of the size often encountered in the climate
sciences, computational constraints can limit the direct
evaluation of (8) and (9). Approximations and iterative
methods used to deal with this practical limitation tend to
focus on the computation of the expected value (Lorenc,
1986). Lorenc (1986) and Pedder (1993) point out that
methods focused on computation of the expected value tend
to be best suited for problems with reasonably reliable and

densely distributed observations. When data are sparse and
noisy, as happens in the early part of the record presented
here, a full specification of the prior covariance becomes
preferable.

A description of the covariance matrix and its evolution
through time is expensive to store and disseminate. A
multivariate Gaussian distribution with n spatial points and
m time points requires mn(mn + 1)/2 numbers to quantify
the uncertainty. Users of climate datasets may not have the
computational resources or mathematical expertise to make
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Figure 11. Same as Figure 10, but for January 1942.

use of a full covariance matrix of uncertainty information. As
an alternative, samples from the posterior distribution can be
distributed. To the extent that the data model is adequate, the
samples form an ensemble of possible realizations of the true
SST. Users can perform standard climate data analyses on the
multiple realizations, building up uncertainty information
in a Monte Carlo fashion.

In the specific case of generating SST datasets, another
important application is the boundary forcing of atmos-
pheric models. It is not uncommon for analyzed SST datasets
to be viewed as non-probabalistic, with the uncertainty in
the system assumed to stem from the internal variability of

the atmosphere only. Instead, atmospheric modellers could
use ensembles as a set of readily accessible and statistically
rigorous possibilities with which to force their models.

The presentation of an ensemble of possible realizations
of SST is especially important in data-poor regions of the
ocean. It is a natural consequence of Bayesian inference
that the expected value of the reconstruction in unobserved
areas will relax towards the mean of the prior distribution.
When considered outside the context of the full covariance
information, data users can falsely interpret these locations
in the data record as less energetic. A proper interpretation,
in contrast, would be that there is little constraint on the
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Figure 12. Same as Figure 10, but for January 1980.

possible states of the system. The sparse and irregular nature
of historical data thus makes ensemble presentation an
important contribution to the research community.

Finally, we suggest that with some ingenuity this
method could be extended to global reconstructions. While
the computational expense of covariance generation and
sampling of mid-scales on a global domain is a significant
obstacle, it may be possible to exploit the inherent sparsity
of the correlation matrix for computational efficiency. One
could also make use of the idea that mid-scale features are

a relatively minor part of the total reconstruction in many
regions of the ocean. It may be the case that mid-scale
reconstruction in isolated domains is sufficient.
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A. Matrix form for the moments of the joint posterior

In section 4 of the article, we show that the posterior
probability of the SST field z can be written as the integral
over the product of two Gaussians:

p(z|y) =
∫

N(z|µz|α , Pz|α) N(α|µα , Pα) dα, (A1)

where the first factor in the integral is the probability of the
total SST field conditional on the large scale and the second
term is the marginal probability of large scales. Here we
obtain a compact matrix form for the results of this integral.
Let us define the Kalman gain matrix K in the usual fashion:

K ≡ CHT(HCHT + R)−1 (A2)

(the reader is referred to the body of the article and equations
(1), (4), (8) and (9) for a description of the variables). Using
K, the expected value of the conditional probability can be
written

µz|α = Eα + K(y − HEα). (A3)

The right-hand side of (A1) can be expanded using the
definition of normal distributions:

p(z|y) ≈ 1

A

∫
e− 1

2 (z−µz|α)TP−1
z|α(z−µz|α)

× e− 1
2 (α−µα)TP−1

α (α−µα) dα, (A4)

where A is a normalizing coefficient. Using the definition of
K and expanding µz|α in terms of α and y, we can then write

p(z|y) ≈ 1

A

∫
e− 1

2 (z−Ky−[I−KH]Eα)TP−1
z|α(z−Ky−[I−KH]Eα)

× e− 1
2 (α−µα)TP−1

α (α−µα) dα. (A5)

In this form, the integral over α is straightforward, leading
to another Gaussian:

p(z|y) ≈ N(α|µz, Pz) = 1

A∗ e− 1
2 (z−µz)TP−1

z (z−µz), (A6)

where A∗ is a new normalizing coefficient and the moments
of this posterior are given by

µz = Ky + (I − KH)Eµα = Eµα + K(y − HEµα) (A7)

and

Pz = Pz|α + (I − KH)E Pα ET(I − KH)T. (A8)

Note that (A8) can be rewritten as

Pz =Pz|α + E Pα ET + [KHE PαETHTKT

− KHE PαET − E PαETHTKT]. (A9)

The first two terms on the right-hand side correspond to
covariances of mid- and large-scale posterior distributions
described in the text. The term in brackets involves
both large- and mid-scale patterns through the factors K
and E . Its calculation requires alternating between local
(high-resolution) and reduced-space (low-dimensional)
procedures. An even higher computational burden must
be met if the large-scale solution involves estimation both
in space and time (as in the Kalman smoother). Because of
these difficulties, using a Monte Carlo approach for sampling
from integral (A1) is a more practical approach.

B. Parameter determination for mid-scale covariance
matrix

Section 5.3 presents the parameters of the mid-scale
covariance matrix that we estimate from the NCEP OI
mid-scale data. Here are the details of the maximum pseudo-
likelihood method used for the estimation.

To isolate the spatial correlation from the variances, we
begin by standardizing the NCEP OI mid-scale data to have
zero mean and variance of unity over the period 1981–2008
(ỹr). Based on exploratory analysis of the NCEP OI mid-
scale data, a priori we prescribe the Matérn shape parameter
ν = 3. Using this value of the smoothness parameter, we
proceed to estimate the kernel matrix (16) centred at each
grid point i. We can express the bivariate distribution of two
points as

[
ỹr,i

ỹr,j

]
∼ N

([
0
0

]
,

[
1 C(i, j)

C(i, j) 1

])
, (B1)

where C(i, j) = f (
, ν) is the anisotropic Matern covariance
from (14)–(16) with σi = σj = 1. We define a likelihood
function for the data centred at grid point i as the product
of these bivariate normals over all points j within 20◦ of
the location of i. We can express the maximum-likelihood
estimate of the parameter 
i as


i = arg max

̂∈�

∏
j �=i

p(ỹr,i, ỹr,j|
̂, ν) (B2)

where � is the set of all 2 × 2 real, symmetric, positive-
definite matrices. Since the multivariate normal likelihood
function in (B2) is nonlinear in all three variables that
comprise 
, its maximization is performed numerically
using a standard Nelder–Mead search algorithm.

Given the kernels at each point, we now combine them
using (17) to form the correlation matrix Q. The global
mid-scale covariance matrix can now be defined as

C ≡ T 1/2QT 1/2, (B3)

where T is a diagonal matrix containing the variance of
the process at each spatial point. We can now write the
multivariate normal distribution for the mid-scale data using
our correlation matrix as yr ∼ N(0, T 1/2QT 1/2 + Roi). The
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maximum-likelihood estimate of the variance would then
be given by

T = arg max
T̂

p(yr|T̂ 1/2QT̂ 1/2,Roi). (B4)

This too is an impractically large maximization, so we solve
iteratively for T using a pseudo-likelihood method. Pseudo-
likelihood formulations assume conditional independence
of geographically distant points. Specifically, we assume
conditional independence of points separated by greater
than 20◦ of latitude or longitude.

This reduces the problem to finding the maximum
pseudo-likelihood estimate within a series of smaller (20◦
× 20◦) subregions centred on the point i. T is constrained
at its upper bound by the pointwise sample variances of
the NCEP OI mid-scale data. Although the minimization
is done over the entire subregion, only the solution at grid
point i is retained. As the pseudo-likelihood maximization
procedure cycles through all grid points i, the solution is
also constrained by any variances within the subsets that
have previously been computed. This enforces continuity
between neighbouring grid points. This process is iterated
over the domain until convergence is achieved.
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