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ABSTRACT

The seasonal and interannual predictability of ENSO variability in a version of the Zebiak–Cane coupled
model is examined in a perturbation experiment. Instead of assuming that the model is “perfect,” it is
assumed that a set of optimal initial conditions exists for the model. These states, obtained through a
nonlinear minimization of the misfit between model trajectories and the observations, initiate model fore-
casts that correlate well with the observations. Realistic estimates of the observational error magnitudes and
covariance structures of sea surface temperatures, zonal wind stress, and thermocline depth are used to
generate ensembles of perturbations around these optimal initial states, and the error growth is examined.
The error growth in response to subseasonal stochastic wind forcing is presented for comparison.

In general, from 1975 to 2002, the large-scale uncertainty in initial conditions leads to larger error growth
than continuous stochastic forcing of the zonal wind stress fields. Forecast ensemble spread is shown to
depend most on the calendar month at the end of the forecast rather than the initialization month, with the
seasons of greatest spread corresponding to the seasons of greatest anomaly variance. It is also demon-
strated that during years with negative (and rapidly decaying) Niño-3 SST anomalies (such as the time
period following an El Niño event), there is a suppression of error growth. In years with large warm ENSO
events, the ensemble spread is no larger than in moderately warm years. As a result, periods with high
ENSO variance have greater potential prediction utility.

In the realistic range of observational error, the ensemble spread has more sensitivity to the initial error
in the thermocline depth than to the sea surface temperature or wind stress errors. The thermocline depth
uncertainty is the principal reason why initial condition uncertainties are more important than wind noise
for ensemble spread.

1. Introduction

It is common practice in the field of numerical
weather prediction (NWP) to equate confidence in a
model prediction with its sensitivity to initialization er-
rors. This is a useful supposition because the weather
system is thought to be chaotic, and thus future states
are highly sensitive to small differences in the initial
state (Lorenz 1963). That weather forecasting systems
are also dimensionally very large (a typical model state
has a dimension of order 106 or higher) makes the ac-

curate specification of the initial condition that much
more challenging. As a result, ensemble forecasting is
becoming the operational standard in weather predic-
tion. Forecasts are made from a distribution of initial
conditions that span the observational uncertainty. The
relative spread of the ensemble forecasts at a later time
is then considered to be an indication of the confidence
in a given event outcome.

This reasoning relies on the assumption that the un-
certainty in a forecast outcome can be distilled into the
uncertainty in the initial state. This is the equivalent of
assuming that the forecasting models are without defi-
ciencies (and that stochastic processes are not impor-
tant). While there have been arguments that this is a
poor assumption (e.g., Swanson et al. 2000; Orrell et al.
2001), the study of forecast error in NWP has recently
focused more on chaos-related uncertainty (e.g.,
Palmer 2000) than on model error.

However, it is difficult to ignore model error in sea-
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sonal-to-interannual forecasting of the El Niño–South-
ern Oscillation (ENSO). For an illustration of this, one
need only look to the range of operational climate fore-
casting models, which are an embodiment of the most
insightful scientific understanding of the system. Inter-
comparison studies, such as Barnston et al. (1999) and
Kirtman et al. (2001) cite large differences between the
forecasts of tropical Pacific sea surface temperature
made with different models.

There is little disagreement that ENSO arises as a
result of coupled feedbacks between the ocean and at-
mosphere. The fundamental physical processes that
govern the growth and decay of ENSO events are sum-
marized in the delayed-oscillator theory, first put forth
by Suarez and Schopf (1988) and Battisti and Hirst
(1989). Other theories of ENSO behavior are discussed
in Wang (2001).

What is still a matter of considerable debate is the
intensity of the ocean–atmosphere feedbacks. Fedorov
et al. (2003) showed that as the strength of the ocean–
atmosphere coupling increases, the nature of the oscil-
lation is altered. In the limit of low coupling, the system
is strongly damped and stochastic “noise” is necessary
to initiate an ENSO event. What we classify as noise are
a host of phenomena that are separated from the
ENSO dynamics (as we understand them) by either
space or time scales. These smaller-scale dynamics are
not resolved in most intermediate-complexity coupled
models and must be treated as an external forcing.
Typically, these higher-frequency signals are thought to
be generated in the atmosphere, but there is some evi-
dence that tropical instability waves in the ocean could
also be considered a source of high-frequency system
noise (Jochum and Murtugudde 2004). This “internal
variability” of the atmosphere is defined as behavior
that is uncoupled from the ocean. This issue is compli-
cated by evidence suggesting that some forms of high-
frequency variability are modulated by the larger
ENSO patterns (Batstone and Hendon 2005). Atmo-
spheric general circulation models (GCMs) should, in
theory, be able to reproduce this noise, as they contain
more comprehensive dynamics. Unfortunately, this fact
alone does not necessarily lead to more realistic tem-
poral ENSO variability (Deser et al. 2005).

If a strong coupling between the ocean and atmo-
sphere is assumed, the ENSO system behaves in a cha-
otic fashion—oscillations are irregular and self-
sustained through the nonlinearities in the model dy-
namics. As such, although the system may respond to
external forcings, it is not essential for simulating the
large-scale variability.

This issue is of practical importance for ENSO pre-
diction strategies. If the system is a damped oscillator,

then the expectation is that the predictability of the
system is limited by the timing, intensity, and spatial
structure of the atmospheric noise that imposes itself on
the system. ENSO predictability under this paradigm
has been addressed in a number of studies (e.g., Pen-
land and Sardeshmukh 1995; Kleeman and Moore 1999;
Thompson and Battisti 2000; Flugel et al. 2004). The
paradigm of a stochastically forced ENSO system was
introduced in the literature a decade ago (e.g., Penland
and Magorian 1993; Penland and Sardeshmukh 1995)
and has persisted as an explanation for the initiation of
ENSO events. In particular, this view has gained sup-
port since the 1997/98 El Niño event, which most mod-
els failed to forecast prior to the preceding summertime
(Fedorov et al. 2003). One of the hallmarks of this
event was a series of strong (and unpredicted) westerly
wind bursts in the western and central Pacific, which
were thought to initiate the eastern equatorial SST
warming (McPhaden 1999). There have been a host of
other studies indicating that an essential component of
the stochastic forcing comes in the form of “subsea-
sonal” wind variability (e.g., Kessler and Kleeman 2000;
Moore and Kleeman 1999a,b; Vecchi and Harrison
2000). This variability is thought to be driven in part by
the Madden–Julian oscillation (MJO; Madden and
Julian 1994).

On the other extreme, if the system dynamics are
chaotic (as is the case in weather prediction), then we
expect the predictability to be limited by the amplifica-
tion of errors in the initial conditions. This regime has
been studied by Goswami and Shukla (1991), Chen et
al. (1997), Xue et al. (1997a,b), Karspeck et al. (2004),
and others.

In either case, most of the predictability studies in the
literature have taken the form of “perfect model” stud-
ies. In experiments such as these, the “truth” is assumed
to be a trajectory that a model is capable of producing
exactly. Deviations from this true trajectory are forced
by either perturbations to the model initial conditions
or by the continuous application of stochastic forcing to
the model. The metric of predictability is defined as
some measure of the dispersion of these perturbed tra-
jectories about the idealized trajectory. In the most ide-
alistic of these, the “true” trajectory is generated from
a long run of a model that is not constrained by the
observed ENSO system (e.g., Kleeman and Moore
1999; Xue et al. 1997a). Other studies have aimed at
estimating the actual (as opposed to the theoretical)
model predictability using forecast models that are ini-
tialized using observations of the real system (Fan et al.
2000; Xue et al. 1997b; Chen et al. 1997). In these stud-
ies, the predictive skill of the forecast model forms part
of the argument for the relevance of the study.
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This study focuses on the problem of evaluating pre-
dictability loss in the context of an intermediate
coupled ENSO forecasting model that was used opera-
tionally at the Lamont-Doherty Earth Observatory
from 1999 to 2003 (LDEO4 is described in Chen et al.
2000). LDEO4 is a version of the Zebiak and Cane
model (Zebiak and Cane 1987, hereafter ZC) that con-
tains a statistical bias correction that works interac-
tively with the model dynamics. The bias correction
scheme serves to bring the model spatial variability in
closer agreement with observations, making the assimi-
lation of observations possible. The LDEO4 model re-
sides in a parameter regime that is characterized by
self-sustained variability. It is often cited as an example
of a chaotic system that is highly sensitive to errors in
initial conditions (e.g., Fedorov et al. 2003).

Here, we look at the predictability in the context of a
semi-idealized experiment: instead of assuming that
LDEO4 is a perfect model, we assume instead that we
have access to a set of “best” initial conditions (hence-
forth referred to as best IC, following Cañizares et al.
2001). These states, arrived at through a low-dimensional
inverse method (also called an “adjoint method”), be-
gin model forecasts that correlate well with the obser-
vations. By perturbing these initial states in accordance
with realistic observational error estimates, we can look
at error growth along model trajectories that are track-
ing the observed system. In this way, the sensitivity of
the model to errors is more likely to be consistent with
that of a realistic and skillful prediction system. Addi-
tionally, we evaluate the effect that internal atmo-
spheric variability has on predictability. In our experi-
ments this missing variability is simulated as stochastic
zonal wind forcing. We compare it to the predictability
loss due to perturbations of initial conditions.

In section 2 we briefly present the adjoint method
used to find the best IC for the LDEO4 model. Section
3 defines the ensemble prediction experiments that are
carried out for perturbation of initial conditions by re-
alistic error covariance estimates and for stochastic per-
turbations of the model trajectory with zonal wind
noise. Section 4 describes the results of the predictabil-
ity experiment by exploring the ensemble spread over a
1-yr forecast period as a function of season, ENSO
cycle, and error parameters. Finally, section 5 discusses
the results and the consequences for model predictions
and predictability.

2. Finding a set of best initial conditions

In this section we describe a low-dimensional adjoint
approach for finding LDEO4 trajectories that are a
least squares best fit to observations of SST anomalies,

thermocline depth anomalies, and wind stress anoma-
lies.

In a multivariate empirical orthogonal (MEOF)
space that spans the coupled modes of variability of
LDEO4, we seek to minimize the cost function:

J � �
k�0

m

�xk � ok�T�xk � ok�, �1�

subject to the dynamical constraint:

xk�1 � N xk. �2�

Here xk and ok are vectors of model states and obser-
vational states (respectively) within the analysis win-
dow of length m months, and N represents a 1-month
integration of the LDEO4 model. Since the model dy-
namics are a strong constraint in the minimization, the
entire problem can be reduced to finding x0, the model
state at the beginning of the analysis window.

To reduce the computational burden of the problem,
both the model and observational states have been pro-
jected into the MEOF space of the model prior to the
minimization. If N were linear, the precise x0 that mini-
mizes J could be easily found using matrix algebra.
Cañizares et al. (2001) approximated the operation of N
in the reduced space by 12 seasonally dependent linear
Markov models and found x0 for this case. Here we
strive to represent the nonlinear nature of N more pre-
cisely by the interactive computation of perturbation
forecast models (PFMs; Lorenz 1965; Xue et al.
1997a,b). PFMs are numerical approximations to the
tangent linear models. As their name implies, the PFMs
evolve small perturbations along some background tra-
jectory of the full, nonlinear model N. By choosing the
perturbations in the direction of the leading MEOFs of
the model, relatively few perturbations can be used to
(approximately) map the linearization of the full model
into a matrix operator of manageable size. The sequen-
tial multiplication of k PFMs approximates a k-month
integration of the tangent linear model.

The number of MEOFs to retain in the projection of
observations and the calculation of PFMs is a practical
consideration; the increased computational cost of re-
taining more modes must be balanced against the per-
formance improvement that it could yield. Karspeck
(2004) shows that in MEOF-based Markov model fore-
casts, retaining more than 30 MEOFs does not result in
greater agreement between the low-order models and
the full LDEO4. We also expect that the higher modes
cannot be specified from observations and there is little
to gain in including them (Cane et al. 1996). Hence-
forth, the dimension of the reduced state space is 30.

The minimization of J can be thought of as a series of
incremental adjustments to the model state at the be-
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ginning of the analysis window. We apply a gradient
descent method, such that the adjustments (or analysis
increments) are in a direction that tends to reduce the
difference between the model forecast and the obser-
vations. A first guess can be obtained by using MEOF-
based Markov models, trained on a long run of LDEO4,
to constrain the minimization of J. Then the nth incre-
mental correction in the minimization is given by

�x0
n � ��

k�0

m

Lk
TLk��1

�
k�0

m

�Lk
T�k

n�; �k
n � ok � N kx0

n,

�3�

where Lk is the PFM approximation to the tangent lin-
ear from 0 to k and superscript T denotes matrix trans-
position. The �k are the innovations (i.e., the difference
between the state that the model has forecast and the
observations at that time). The new analysis vector at
each iteration is

x0
n�1 � x0

n � �x0
n. �4�

At every iteration, the full model is run with the current
estimate of the initial conditions that will lead to the
best fit with the observations. New PFMs are con-
structed with respect to this trajectory and we use (3) to
transform the observation/forecast mismatch into our
next analysis increment. This is repeated until conver-
gence.

The data that are used for the assimilation and the
verification of model performance are from the follow-
ing sources: 1) zonal and meridional components of
wind stress from The Florida State University (Stricherz
et al. 1997); 2) SST anomalies from the Climate Predic-
tion Center of the National Centers for Environmental

Prediction (NCEP); and 3) analyzed ocean fields ob-
tained from the assimilation of tide gauge data and sat-
ellite altimetry into the Cane–Patton model (Cane and
Patton 1984) using a reduced space Kalman filter (Cane
et al. 1996; Kaplan et al. 2004). Note that these are
analysis products and not raw observations. The ana-
lyzed fields of the SST and wind stress anomalies were
interpolated onto the ZC grid. The ocean fields were
originally produced on the grid used in LDEO4. The
observed fields were then projected on the reduced
space spanned by the leading 30 MEOFs (see appendix
for details). Henceforth the references to the “observa-
tions” are to the MEOF projection of the observations
of SST, ocean states, and wind stress.

The minimization of (1) subject to the constraint (2)
was done for every start month from 1975 to 2002, using
a 12-month analysis window. The initial model states
determined through this procedure will be referred to
as “best IC” and designated by x*. They are best in the
sense that LDEO4 trajectories initialized with these
states should agree well with the observations in a least
squares sense. These states give good forecasts by using
future states as a constraint, so this method does not
represent a real-time forecasting procedure. The model
trajectories do not perfectly shadow the observations
because our model is not a perfect representation of the
observed ENSO system and because the minimization
is performed in a reduced state space on a nonlinear
model. However, the skill the model exhibits when ini-
tialized with the best IC is near the upper bound of the
model’s forecasting abilities.

Figure 1 shows 12-month LDEO4 trajectories of the
Niño-3 index initialized with x* at each month from
1975 to 2002. Superimposed in bold gray is the histori-

FIG. 1. Twelve-month LDEO4 forecasts initialized with best IC from 1975 to 2002. Initial
states are found using the adjoint method. The thick gray line corresponds to the observed
Niño-3 index.
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cal record of the Niño-3 index. The Niño-3 index is
defined as the average SST anomaly in the region 5°S–
5°N, 150°–90°W. This is computed from the monthly
SST analysis by Kaplan et al. (1998, 2003). Over all
calendar start months, these trajectories correlate with
the observations with coefficients greater than 0.85 at
all leads from 0 to 12 months. Note that all of the ENSO
events are captured by these initial conditions. There
are only two false forecasts, in 1976 and 1994. Gener-
ally, the incremental formulation of the low-dimension
inversion employed here tends to give poor results
when the system behaves in a highly nonlinear fashion.
As a result, we expect that there will be instances when
the technique is unsuccessful.

3. Experimental setup

a. Perturbation of best initial conditions

A 500-member ensemble of LDEO4 forecasts was
initialized at each month from 1975 to 2002. For each
member of the ensemble, the best ICs were perturbed
with a random sample (zero mean, normally distrib-
uted) from the large-scale observed error covariance
estimates of SST, wind stress, and thermocline depth
(described in the appendix). Thus, at each start month
the initial ensemble perturbation covariance is consis-
tent with the error covariance estimates. Each en-
semble member was integrated forward for 12 months.
There is no temporal correlation between perturbations
in adjacent start months, nor do we assume any sea-
sonal variations in the error patterns.

b. Perturbation with continuous, stochastic wind
forcing

Here we consider the effect that stochastic zonal
wind forcing has on the spread of LDEO4 trajectories.
It should be noted that the anomaly variance in
LDEO4 is self-sustained through nonlinearities in the
model dynamics, and as such the model does not re-
quire any external stochastic forcing.

An ensemble of LDEO4 forecasts (each 12 months in
length) was initialized with the best IC at every month
from 1975 to 2002. At every 10-day interval (the time
step of the model), a perturbation was added to the
zonal wind stress field. The perturbation was held con-
stant for a total of 30 days (three time steps), and then
a new temporally uncorrelated perturbation was ap-
plied. This was repeated for the duration of the 12-
month forecasts. The perturbation fields were uncorre-
lated between model points, drawn from a zero-mean
Gaussian distribution. Since the atmospheric compo-
nent of the model has 5° � 2° resolution, the noise is
roughly equivalent to mesoscale variability with decor-

relation scales of 500 and 200 km in the zonal and me-
ridional directions. The standard deviation of the per-
turbation has a maximum at the equator, falling off with
latitude with an e-folding distance of 6° (recommended
by Kessler and Kleeman 2000).

It is not altogether clear what the proper magnitude
of the perturbation should be. Hourly wind data from
the European Centre for Medium-Range Weather
Forecasts (ECMWF) show that the gridpoint scale dis-
tribution of zonal wind anomalies in the central equa-
torial Pacific has a standard deviation of 	2 m s�1 (G.
Vecchi 2004, personal communication). In their studies
of the effect of intraseasonal variability on ENSO,
Zebiak (1989) uses wind stress perturbations that map
to wind speeds of 	1.5 m s �1 and Kessler and Kleeman
(2000) estimate wind perturbations of 	3.5 m s �1, for
a coherent temporal and spatial pattern. As pointed out
by Moore and Kleeman (1999a, hereafter MK99), much
of the coherent intraseasonal variability in the observa-
tions can be generated by the model dynamics within a
few weeks. (The intermediate coupled model used in
their study is dynamically similar in most respects to the
ZC model.) In essence, low-magnitude stochastic per-
turbations to the model can grow and develop into the
coherent structures that we associate with intraseasonal
wind patterns. Because of this, only a fraction of the
observed intraseasonal wind variability can be treated
as internal atmospheric variability. MK99 estimate that
the standard deviation of uncoupled atmospheric noise
that projects onto the MJO-type structure is only 	0.4
m s �1. As we will discuss in section 4a, this is consistent
with a grid-scale forcing amplitude in our model of 	4
m s �1. While this is our best estimate of the appropriate
standard deviation, we explore a generous range from 2
to 10 m s �1.

c. Measuring predictability

A number of metrics have been used in the literature
to quantify predictability. Most of them are related in
some way to the size of the ensemble spread relative to
the variance of the system, or the “signal-to-noise” ra-
tio. There are also a host of predictability measures that
can be useful for looking at the utility of individual
forecasts (e.g., Kleeman 2002; Schneider and Griffies
1999; DelSole 2004). In this study we use two measures
to examine predictability. The forecast ensemble
spread is used as a simple indicator of our confidence in
a given forecast and the “potential prediction utility”
(PPU; Kleeman and Moore 1999) is used as a measure
of the usefulness of the forecast. The PPU can be shown
to be analogous to a correlation coefficient in the sense
that it takes into consideration the magnitude of the
signal.
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Of course, to measure ensemble spread, a choice
must be made as to which variables we think best define
the state of the system. This choice ultimately depends
on the purpose of the experiment. Since we are moti-
vated by the practical problem of predicting the ENSO
system, we choose the Niño-3 index, as it is commonly
used to verify operational forecast systems. It is worth
noting, however, that there are other measures that
may be as useful for categorizing the state of the sys-
tem. The zonal average of the equatorial upper-ocean
heat content, for example, is highly correlated with the
Niño-3 index at a 7–9-month lead time (McPhaden
2003).

The straightforward measure of forecast ensemble
spread is defined as

��
2�t, k� �

1
N �

i�1

N


 fi�t, k� � f�t, k��2, �5�

where fi(t, k) are members of the ensemble forecasts at
start times t and forecast lengths k, and f(t, k) is the
ensemble mean over the N ensemble members. The
forecasts made from the best IC do not differ signifi-
cantly from f. In theory, LDEO4 will correctly simulate
the variance of the ENSO system regardless of the fore-
cast lead time. However, there are small differences
between the forecast variance at leads up to 12 months.
These are less than 10% of the system variance. None-
theless, we postprocess the ensemble members by scal-
ing their variances to match the observations. This pro-
cessing did not alter the results presented in this study.

Kleeman (2002) and Kleeman and Moore (1999)
make note of the fact that an ensemble prediction with
a large spread may still have considerable utility if one
is forecasting a relatively large signal. The potential
prediction utility, which takes this into consideration,
can be expressed as

PPU�t, k� �
1

1 � ��
2�t, k��f�t, k�2 . �6�

Like the commonly used correlation coefficient, the
PPU also varies from zero to one, with a value of one
being a perfect forecast. The PPU naturally tends to-
ward unity as the ensemble spread tends to zero. Using
this measure, it is easy to see that the condition for a
useful prediction is not simply low ensemble spread.
Predictions can be equally useful when the forecasted
signal is very large.

An issue to keep in mind as the results are presented
is that the predictability can be viewed from two differ-
ent perspectives: as a function of the time at which the
forecast was initialized (i.e., “initialization time”), or as
a function of the time at the end of the forecast (i.e.,

“verification time”). Categorizing the results in terms
of the initialization state can seem like a natural choice,
and if a forecast length is specified a priori, then this
will appear to be a reasonable categorization scheme.
However, this practice would be misleading. In the pre-
dictability experiment done here it masks the primary
influence on the ensemble spread: the state of the sys-
tem at the end of the forecast (see section 4b). There-
fore, the results here are presented as a function of the
verification time.

4. Results: LDEO4 predictability from 1975 to
2002

a. Uncertainty in initial conditions versus
continuous stochastic forcing

The dot-marked solid black line in Fig. 2 shows the
spread of the forecast ensemble as a function of fore-
cast lead time averaged over all start months using our
best estimate of the magnitude of the initial error. The
other two solid black lines correspond to the spread
when the initial error is increased and reduced by 50%.

For comparison, the dashed lines show the resulting
ensemble spreads when stochastic zonal wind stress is
applied continuously to the model forecast initialized
from the best IC. On the low end of our estimate of the
magnitude of the forcing (� � 2 m s �1) it is clear that

FIG. 2. The ensemble spread in LDEO4 forecasts as a function
of lead time (averaged from 1975 to 2002). The dark solid line
marked with filled circles corresponds to the spread generated
with our standard estimate of the magnitude of the initialization
error. The other two dark solid lines show the spread when the
initialization error is reduced or increased by 50%. Dashed gray
lines correspond to ensembles generated by initializing the model
with the best IC and then perturbing the model trajectory with
stochastic zonal wind noise. The std devs of the wind perturba-
tions are indicated on the left-hand side of the plot. Our most
realistic estimate for wind forcing is marked with stars.
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the stochastic wind forcing is not very effective in gen-
erating forecast spread in this model. Even with the
highest value shown, � � 10 m s �1, which is five times
the usual estimate for �, the spread is smaller than with
the best estimate of the initialization uncertainty. How-
ever, we consider only a spatial structure for which each
5° � 2° grid box is uncorrelated with all other boxes. It
is far from clear what the appropriate spatial structure
should be for the wind noise.

What matters for the size of the spread is the ampli-
tude of the leading stochastic optimal S that the wind
noise of variance �2 excites (MK99). MK99 show that
this pattern is reminiscent of MJO episodes. Suppose
the typical scale of S (i.e., the characteristic distance
over which it changes sign) is s grid points and the
correlation scale of the wind noise is w grid points.
Then the stochastic optimal sees roughly s/w indepen-
dent samples within a characteristic scale. The average
of these samples, to which the stochastic optimal effec-
tively responds, has the variance of �2w/s. This is a
factor of w higher than what occurs in the case of un-
correlated noise (when w � 1). Therefore, the existence
of wind noise correlations over w grid points will raise
the ensemble spread by the factor w. The largest
amplitude variance results when w � s, which increases
the ensemble spread by approximately s. This one-
dimensional argument easily carries to higher dimen-
sions. Specifically, if a stochastic optimal has decorre-
lation scales sx and sy in zonal and meridional direc-
tions, respectively, the maximum ensemble spread due
to the correlated noise can be a factor sxsy larger
than for uncorrelated noise. The details of the response
depend on the shape of the correlation pattern, but the
size of the spread will not be sensitive to it.

If one takes the leading stochastic optimal in MK99
as representative, then the characteristic scale of S is
	50° � 20°; that is, sx � sy � 10, with sxsy � 10.
Thus, a 10-fold increase in the standard deviation of the
forcing will be equivalent to forcing at the scale of the
stochastic optimal. MK99 estimate that the standard
deviation of this pattern over the tropical Pacific (that
does not result from coupled model feedbacks) is 	0.4
m s �1. Thus, our imposition of a value of � � 4 m s �1

is consistent with the amplitude of MJO-type forcing
studied in MK99, and the higher amplitudes we test
easily envelope the possible range of variability. While
different spatial structures for the wind noise would
yield somewhat different answers, it is unlikely that
they could be outside the range shown in Fig. 2.

At any rate, unless the errors are vastly different
from our best estimates, it is clear that initialization
error is the primary contributor to error growth. How-
ever, a reduction in the initialization error of 50% puts

us squarely in the ballpark of the error we might expect
from stochastic forcing. These results suggest that while
stochastic processes may not be large contributors to
predictability loss at this point, they may increase in
importance as initialization procedures are improved.

These results are consistent with those of Zebiak
(1989), who studied the impact of perturbing the wind
stress fields in the original ZC model with intraseasonal
variability. He also concluded that intraseasonal vari-
ability had only a marginal impact on forecast spread
relative to differences in initial state. Based on these
results, we restrict our remaining analysis to the loss of
predictability due to initialization uncertainty. We will
return to stochastic wind error in the discussion.

b. Seasonal cycle of predictability

Viewing the historical spread at lead times from 1 to
12 months, we see that there is a strong seasonal cycle
at all leads (Fig. 3). Note that the spreads are not plot-
ted at their initialization time, but at their verification
time. To emphasize this point, Fig. 4 shows contours of
the ensemble spread as a function of lead time (x axis)
and of initialization time (y axis). In general, the veri-
fication calendar months of June have the lowest fore-
cast ensemble spread and the calendar months of De-
cember (indicated by the dashed line) have the great-
est. While there is an overall trend toward greater
spread at longer leads, it is far from monotonic, being
dominated by a seasonal expansion and contraction of
ensemble spread. The idea that the ensemble spread is
better understood as a function of the calendar month
at the end of the forecast (regardless of the lead time)
than as a function of the initialization month departs
from what is typically presented in the literature (e.g.,
Fan et al. 2000; Xue et al. 1997a,b).

The Niño-3 anomalies from the analysis of observa-
tions by Kaplan et al. (1998, 2003) for the 1856–2003
period have the same distinct dependence on season
(Fig. 5). The seasonal dependence of both the model
ensemble spread and the standard deviation of Niño-3
anomalies have a similar “U” shape, with minimum
variance in the spring and early summer, and the great-
est variance in winter. On average, both model pertur-
bations and observed anomalies of Niño-3 decay in
January through March have nearly no growth through
the springtime and grow rapidly through the fall and
early winter.

c. Predictability and ENSO phase

The strong relationship between the phase of the
ENSO cycle and the ensemble spread is evident in Fig.
3. A sharp suppression of error growth coincides with
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the decay of strong El Niño events and continues
through the following cool ENSO phase (La Niña). We
see this pattern very clearly in the 1982/83 event, the
protracted 1986–88 event, and the 1997/98 event. This is
consistent with the perturbation growth suppression
during the cool ENSO phase found by Xue et al.
(1997a).

The coupled feedbacks between positive SST anoma-
lies and increased surface wind convergence can also be
responsible for faster perturbation growth when the
SST anomaly is positive. Warmer SSTs induce conver-
gent surface wind fields that, in turn, increase the at-
mospheric heating, leading to further convergence. This
positive feedback enhances the growth of perturba-

tions. This feedback is less active when SST anomalies
are negative (Tziperman et al. 1997).

The scatterplot in Fig. 6 illustrates the relationship
between the ensemble spread and the sign of the
Niño-3 index. Plotted in the figure are the 1-yr running
means of the ensemble spread centered at the verifica-
tion time verses the 1-yr running mean of the observed
Niño-3 index. The annual averaging is applied in order
to highlight the interannual variability. The spread is
low when Niño-3 is negative and higher when Niño-3 is
positive. The points with squares correspond to the
1997–98 event (from January 1997 to December 1998),
and the points with circles correspond to the 1982–83
event (from January 1982 to December 1983). The lin-

FIG. 3. Ensemble spread in LDEO4 forecasts of Niño-3 from 1975 to 2000 for 1-, 3-, 6-, 9-,
and 12-month lead times (in black). Time axis shows the month of verification. The Niño-3
index is plotted in bold gray for reference.
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ear relationship between SST anomalies and the en-
semble spread does not hold for larger events. It ap-
pears that the spread in Niño-3 saturates at an annual
average of 	1°C, even as Niño-3 continues to grow.
This is likely due to the subsurface temperature param-
eterization in the model. As in the real world, the SST
cannot increase indefinitely. When the thermocline is
very deep, the time tendency of the surface tempera-
ture due to subsurface upwelling is greatly reduced.
When we exclude these large events, the annually av-
eraged spread has higher than 0.75 correlation with
Niño-3 at all leads.

The use of the PPU [Eq. (6)] as a predictability mea-

sure can help illuminate the relationship between the
system state and the ensemble spread that we discuss
above. The contour plot in Fig. 7 shows the PPU from
1975 to 2002. PPU values near one are indicative of
useful predictions, while values near zero indicate re-
gions where the ensemble predictions may be wildly
misleading. Dashed lines have been plotted at the veri-
fication month of December. A visual inspection of this
plot reveals that once we have normalized the spread
by the squared anomaly value (as is done in the PPU
measure) there is no longer a robust seasonal cycle. We
see, instead, multiyear swaths of high and low predict-
ability.

FIG. 4. Contours of the ensemble spread in Niño-3 index as a function of the initialization
month and lead time. The dashed white line corresponded to the verification months of
December. Units are °C.
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The late 1970s (through 1981) are characterized by
low prediction utility. This is attributable to the fact
that there is significant wintertime error growth
throughout this period while the system remains in a
near-neutral state. By construction, PPU gives less
credit for reasonable forecasts of normal conditions
than for anomalous conditions. As with correlation
scores, it implicitly measures against a strawman fore-
cast of climatology. As we saw in Fig. 3 and Fig. 6, the
error growth is modulated by the slight positive–
negative swings in the Niño-3 index, but these changes
are a relatively small percentage of the total wintertime
ensemble spread. In practical terms, this period would
be one in which there would be a danger of making
false forecasts nearly every winter. The 5-yr period
from 1990 to 1995 has similar characteristics.

Contrast this to the period 1982 through 1990. This
period is characterized by relatively high prediction
utility. Even though there is significant wintertime er-
ror growth during the warm events of 1982–83 and
1986–88, the utility measure downscales it by the high
signal. In the years following these events, the winter-
time error growth is largely suppressed. The same re-
lationship holds beginning in 1997, through the growth
and decay of the 1997–98 El Niño, following La Niña,
and into the beginning of 2001.

d. Error growth and the relative uncertainty in
different model fields

We would like to investigate the relative roles of ini-
tialization error in SST, thermocline depth, and zonal

wind stress on error growth in LDEO4. We use the
reduced-space, empirically calculated linear approxi-
mations to LDEO4 (PFMs; described in section 2) in
lieu of the full model. The PFMs were constructed
along the model trajectories initialized at every month
with the best IC. Since each PFM was constructed over
a 1-month interval, an m-month forecast is performed
by a sequential application of m PFMs.

In the previous experiments, we calculated the en-
semble spread by integrating a 500-member ensemble
of initial conditions forward using LDEO4. To avoid
the computational burden of doing full ensemble inte-
grations, we approximate the spread after m months by
projecting the initial error covariance (R̂) forward in
time using the PFMs:

�̂ � n̂TLmR̂Lm
T n̂. �7�

In this notation Lm is the sequential multiplication of m
PFMs. Multiplication by Lm simulates an m-month in-
tegration of LDEO4 from an initial condition that is in
the vicinity of the set of best IC. The vector n̂ is a
30-element column vector that contains the Niño-3 in-
dex for each MEOF mode. The bookend multiplication
by n̂ and its transpose projects the spread of the MEOF
covariance into the spread of Niño-3.

In general, the PFM approximations do a fair job of
estimating the seasonal cycle of error growth in
LDEO4, and the suppression of growth during time
periods of extended negative Niño-3 anomalies (such as
after an El Niño event). However, they do not contain
the full model nonlinearities that act to limit growth. As
a result, their wintertime error growth tends to overes-
timate the growth in LDEO4. Because of this, we do
not wish to make a direct comparison of the temporal
average error growth calculated by the PFM and the
error growth in LDEO4. Instead, we use the median
error growth over all months from 1975 to 2002 as it
tends to be in close agreement with the median spread
of LDEO4 and is not affected by the unrealistically
high error growth in the winter season.

The total error covariance (in MEOF space) can be
expressed as the summed contribution of the individual
error fields

R̂ � aR̂w � cR̂sst � bR̂h, �8�

where the scalars a, b, and c can be used to vary the
magnitude of the error covariances, while keeping the
patterns constant. When they are all equal to one, the
error covariance is our most realistic estimate of cur-
rent error levels (explored in the previous sections). We
vary a, b, and c from 0 to 2 in increments of 0.25.

Figure 8 shows the level contours of the PFM-

FIG. 5. Gray line: observed standard deviation of Niño-3
anomalies for each calendar month (normalized by the total stan-
dard deviation in observed Niño-3). Black line: Ensemble spread
of LDEO4 forecasts for each calendar month averaged over all
leads and all initialization times and normalized by the total en-
semble spread for all months at all leads.
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generated ensemble spread in Niño-3 (the median
value over the 27-yr record) at a 6-month lead. The
levels range from 0.1° (blue) to 1.0°C (red) in intervals
of 0.05°C. Altering the magnitude of the errors in ther-
mocline depth has the greatest impact on the 6-month
ensemble spread. On the other hand, the spread is rela-
tively insensitive to changes in the SST initial error co-
variance. The spread is only sensitive to variations in

wind stress error when the thermocline depth error is
small. In Fig. 9 this can be seen in a simplified format.
In Fig. 9 (top), each dark line corresponds to holding
two of the error fields constant (with their scaling pa-
rameter equal to one), while the remaining one is al-
lowed to vary. For comparison, the gray line represents
the spread if the magnitudes of the fields were scaled
simultaneously.

FIG. 6. Scatterplots of the 1-yr running mean of the ensemble spread verses the 1-yr running
mean value of the Niño-3 index. The points are centered at their verification time, not their
initialization time. The points with squares coincide with the 1997–98 event (from January
1997 to December 1998), and the points with circles coincide with the 1982–83 event (from
January 1982 to December 1983). Linear regression coefficients are given in upper-left-hand
corner. Units are °C.
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In Fig. 9 (bottom) the dark lines correspond to hold-
ing two of the error fields to zero, as the magnitude of
the third is varied. Again, the solid gray line shows the
spread if the magnitudes of the fields were scaled si-
multaneously. The remaining gray dashed/dot-marked
line shows the spread if only the SST and wind stress
error fields were varied. We can see from this plot that
if there was no error in the thermocline depth field, the
predictability loss associated with initial error would be
comparable to that associated with stochastic wind forc-
ing. These general results hold for all lead times from 1
to 12 months.

5. Discussion and conclusions

The purpose of this study was to consider the pre-
dictability of LDEO4 out to 1-yr lead times. In particu-
lar, we explored predictability loss due to two error
sources: large-scale uncertainty in the initial conditions
and model sensitivity to subseasonal stochastic zonal
wind forcing.

In general, from 1975 to 2002 our best estimate of the
large-scale uncertainty in the initial conditions leads to
larger ensemble spreads than continuously applied sto-
chastic wind forcing (at all leads from 1 to 12 months).

FIG. 7. Contours of the potential prediction utility in Niño-3 index as a function of the
initialization month and lead time. The dashed white line corresponded to the verification
months of December.
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However, the effects of internal atmospheric noise are
not negligible. We would expect that with improve-
ments in observing systems and data assimilation meth-
ods, the “noise” effects will become of comparable im-
portance to initial condition errors.

The forecast ensemble spread has a very strong sea-
sonal dependence, with greatest spread in the winter
and the least spread in the spring and early summer.
This seasonal dependence closely matches the seasonal
cycle of observed Niño-3 anomalies independently of
forecast lead time or calendar month of initialization.
These results support earlier findings by Thompson and
Battisti (2000).

Our results suggest that reducing the uncertainty in
our representation of the initial thermocline depth (or
sea level height) would be the most beneficial for re-
ducing the uncertainty of LDEO4 forecasts. We addi-
tionally conclude that were it not for the error in the
thermocline depth, the stochastic wind forcing associ-
ated with atmospheric internal variability would domi-
nate the spread.

This does not mean, however, that there is no utility
in improving the observing systems of SST and wind
stress. On the contrary, because the tropical ocean/
atmosphere system is so tightly coupled, SST and wind
stress, if known well enough over a period of a few
months to a year, can effectively be used to infer the

thermocline depth in the tropical Pacific. This helps us
better understand the results of Chen et al. (2004), who
find that skillful ENSO forecasts are possible even if
only SST data are assimilated into the initial conditions.
Their success results from using a coupled nudging
scheme, where the thermocline depth fields have time
to adjust to the SST information.

Averaged over the seasonal cycle, there is an ap-
proximately linear relationship between the Niño-3 in-
dex and the ensemble spread. More precisely, during
time periods when Niño-3 is negative the error growth
is reduced and when Niño-3 is positive the error growth
is increased. However this relationship breaks down
during the strong El Niño years, when the spread is not
significantly larger than in moderately warm years. The
most dramatic feature of the state dependence of
spread is the suppression of wintertime growth in the
years following an El Niño event.

These two features of the error behavior have impor-
tant implications for interannual-scale prediction utility
in the sense that it leads us to conclude that both the
warm and cold phases of ENSO are potentially very
predictable, but for different reasons. While El Niño
events have a large signal, their wintertime growth is
typical of states that are only moderately warm. Hence,
prediction utility is high. Cool events, on the other
hand, have suppressed wintertime growth, also result-

FIG. 8. Level contours of the 6-month spread in Niño-3 as calculated with the PFM ap-
proximations to LDEO4. Contours range from 0.1° (blue) to 1°C (red) in intervals of 0.05°C.
The scales represent the magnitude of each error field relative to our standard estimate.
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ing in high prediction utility. It is the neutral phase of
ENSO that is least predictable, as wintertime error
growth leaves us vulnerable to false predictions.

In terms of the seasonal time scale and ENSO phase,
it is important to note that the error growth is not well
described as a function of either the initialization state
or the initialization season. Instead, it depends more on
the state of the system (or the calendar month) at the
end of the forecast. The literature, however, has tended
to focus on categorizing error growth in terms of the
initial state. This is clearly a pragmatic approach, as it
suggests that there could be advance knowledge of the
predictability of the system. (Of course, if we are only
interested in the seasonal cycle of error growth, this is
still possible.) In the paradigm developed here, how-
ever, anticipating the ensemble spread on interannual
time scales requires that we have a forecasting system
that can accurately follow the system trajectory. Thus,
knowing the predictability a priori is no less (or more)
difficult than predicting the state of the system.

At present, however, the degradation of useful pre-
diction may not necessarily result from stochastic forc-

ing or from initial condition error, but from systematic
inadequacies in either the model dynamics or the ini-
tialization system (biases). In this study, we have cir-
cumvented this issue through the artificial construction
of “best” initial conditions. Systematic deficiencies in
the model dynamics constitute an especially difficult
problem, as the resolution of the bias component of
model error requires that we actually have a deeper
understanding of the dynamics of the system. At the
very least it requires an observational record that is
long enough to allow for a statistical diagnosis of the
bias (Chen et al. 2000, 2004). While there may be pre-
dictability loss that is inherent in the system (i.e., stem-
ming from small-scale errors or external influences),
there is clearly a large component of predictability loss
that can be reduced through better specification of ini-
tial conditions. But the fruits of these advances can only
be realized if we have a model that is capable of track-
ing the ENSO system trajectory. As such, the findings
of this work serve to underscore the need for better
models, assimilation procedures, and observing sys-
tems.

FIG. 9. The 6-month spread in Niño-3 as calculated with the PFM approximations to
LDEO4 (units are °C). (top) The magnitude of the initialization error covariance for each of
the fields is multiplied by a scaling factor from 0 to 2 (in increments of 0.25) while keeping the
remaining two error covariances fixed at their standard magnitude (corresponding to a scaling
factor of 1). For reference, the gray line represents the spread if the magnitudes of the fields
were scaled simultaneously. (bottom) Same as top, except that the unscaled error fields are
held to zero. Gray lines show simultaneous scaling of all the error fields and just the SST and
zonal wind stress.
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APPENDIX

Reduced Space Representation of Observations
and Their Error

a. Projection of observations into the model state
space

The model state space (x) is only partially observed
(via SST, wind stress, and thermocline depth). For pro-
jecting these observations into the model state we de-
fine sampling matrices, Hw, Hsst, and Hh, which map the
model variables to the observed fields (ow, osst, and oh):

ow � Hwx; osst � Hsstx; oh � Hhx. �A1�

The subscripts w, sst, and h refer to SST, wind stress,
and thermocline depth anomaly fields. Each sampling
matrix is a submatrix of the model state identity matrix
with only rows corresponding to the variables that are
observed. The reduced space representation of the
model state can be expanded via x � Ex̂, where E is a
matrix whose 30 columns are the leading multivariate
empirical orthogonal functions (MEOFs) and x̂ is the
30-dimensional vector of their amplitudes. In comput-
ing the MEOF amplitudes, the model variables are
nondimensionalized such that each field has approxi-
mately equal contribution to the total variance (see
Cañizares et al. 2001 for details).

To project the observations onto the reduced space,
we minimize the squared difference between the obser-
vations (o) and the expansion from their reduced space
representation (ô):

�HwEô � ow�T�HwEô � ow� � �HsstEô � osst�
T

� �HsstEô � osst� � �HhEô � oh�T�HhEô � oh�,

�A2�

leading to

ô � 
ET�Hw
THw � Hsst

T Hsst � Hh
THh�E��1ET

� �Hw
Tow � Hsst

T osst � Hh
Toh�. �A3�

b. Error covariance estimates

By reducing the dimension of the error covariance in
SST, thermocline depth, and zonal wind stress, we can

decrease the number of realizations needed to ad-
equately sample it. We do this by projecting them into
the model MEOF space, as in

R̂ � Ĉ�1ET�R̂w � R̂sst � R̂h�EĈ�1, �A4�

where

Ĉ � ET�Hw
THw � Hsst

T Hsst � Hh
THh�E �A5�

and

R̂w � Hw
TRwHw; R̂sst � Hsst

T RsstHsst; R̂h � Hh
TRhHh.

�A6�

Here, Rw, Rsst, and Rh are the full space error covari-
ances of the observations. The relations in (A4)–(A6)
follow easily from (A3) if you consider that the full
space errors in each field (eh, esst, and ew) can be pro-
jected into the reduced space in exactly the same way in
which observations are projected. Then R̂ is defined as
the covariance of the reduced space error (i.e., R̂ �
�êêT� ), and it is assumed that there is no cross co-
variance between the three error fields.

In general, data analysis products (such as those used
for initialization of ENSO forecasts) have a theoretical
error associated with them that stems from the error in
the raw observations (this is both instrumental and
sampling error), from covariance patterns that are not
resolved by the analysis scheme, and from the large-
scale statistical or dynamical constraints applied in the
analysis. Each of the error covariance estimates used in
this study are derived from analysis schemes that are
performed in a reduced EOF space. As such, the “un-
resolved” component derives from the loss of covari-
ance information due to EOF truncation. However, the
large-scale component of the analysis error that pro-
jects onto the space of the leading EOFs is our concern
in this study. A description of the large-scale error co-
variance estimates for zonal surface wind stress, SST,
and ocean upper-layer depth are presented below. Note
that the surface wind velocity and SST anomaly error
covariances that we use for the perturbation experi-
ment were not derived from the same analyzed prod-
ucts that were used as the data source in our adjoint
scheme. However, the raw data used in the analyzed
products come from the same sources, and we assume
that the large-scale spatial patterns in the errors are still
relevant.

1) ZONAL WIND STRESS

Error estimates for analyzed wind fields were taken
from a reduced space optimal interpolation (OI) analy-
sis described in Evans and Kaplan (2004). Although the
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analysis error is time dependent, we take the average
error from January 1856 to September 2001. The mag-
nitude of the pattern is adjusted such that the error
magnitude in the central equatorial Pacific is of com-
parable magnitude to the small-scale variability re-
ported in daSilva et al. (1994), that is, 	3 m s�1. We
calculate zonal wind stress errors from the zonal surface
wind errors (u�) using the bulk formula

��x � �aCdWu�, �A7�

where �a is the density of air and Cd is a homogeneous
bulk drag coefficient. The product �aCd is estimated to
be 0.02 � 104 dyn s2 m�4 (Zebiak and Cane 1987), and
the absolute wind speed (W) was taken as the annual
mean from the climatology in the Atlas of Surface Ma-
rine Data (daSilva et al. 1994).

The standard deviation of the zonal wind stress error
is fairly uniform through most of the central tropical
Pacific, with an amplitude of 	0.14 dyn cm�2. The er-
rors tend to be a bit smaller over the far western and
eastern parts of the equatorial basin. The largest errors
occur about 12° north of the equator in the western part
of the basin, where the mean winds are very strong.
These maximum errors have amplitudes of 0.24 dyn
cm�2.

2) SEA SURFACE TEMPERATURE

Kaplan et al. (1998) describe a reduced space optimal
smoothing analysis method for global SST anomaly
fields. The data used in the analysis are from the U.K.
Met Office historical sea surface temperature dataset
(MOHSST5) of the Global Ocean Surface Tempera-
ture Atlas (GOSTA). Their optimal smoothing tech-
nique uses a first-order autoregressive model as a weak
constraint to smooth the interpolation in time. We take
the average error covariance from January 1956 to De-
cember 1991. The errors tend to be greatest along the
equator, with a standard deviation of 	0.2°C. Regions
in the equatorial eastern and central Pacific have the
largest errors, with standard deviations of 0.25°C.

3) UPPER-LAYER THICKNESS

Estimates of the error in the depth of the upper layer
(and the corresponding geostrophic surface current)
are based on the reduced space Kalman filter scheme
described in Cane et al. (1996) and Kaplan et al. (2004).
The data assimilated into the analysis are the gridded
TOPEX/Poseidon sea level height altimetry product of
Cheney et al. (1994). The forecast model used in the
Kalman filter scheme is a version of the Cane and Pat-
ton (1984) algorithm for solving the shallow water
equations on an equatorial beta plane. The model is

forced with wind stress fields from the Florida State
University analysis (Stricherz et al. 1997). The errors in
the wind stress fields are assumed to be the sole source
of error in the shallow water model. Analysis error es-
timates for the thermocline depth anomaly are taken as
the temporal average from October 1992 to November
2003. These estimates are comparable to those reported
by a variety of sources. See Kaplan et al. (2004) for a
comparison of different altimetry assimilation products.

Errors in the upper-layer thickness are on the order
of 10 m (	4 cm in sea level) throughout the tropical
basin. The maximum errors occur just off the equator
along the western boundary, with a standard deviation
of 	15 m. The position of these maximums results from
the accumulation of wind errors transmitted by Rossby
waves traveling westward across the basin.
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