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[1] Monthly interannual anomalies of tropical Pacific sea level height from TOPEX/
Poseidon altimetry are compared with simulation and assimilation products from a variety
of models, ranging from a simple linear long wave approximation to ocean general
circulation models. Major spatial similarities in the error patterns are identified. These
include zonally elongated maxima in the northwest and southwest tropical Pacific Ocean,
a band of high values near 10�N, slightly inclined toward the equator from the Central
American coast, and low values on the equator and in the southeastern tropical Pacific.
These features are also present in the pattern of small-scale variability (SSV) of sea level
height. Spatial and temporal components of this SSV are analyzed for predominant
variability types. Monte Carlo experiments identify the areas where high SSV is wind-
driven, caused by a similar pattern of variability in the wind stress. Model products
systematically underestimate signal variance in such areas. Variability in other areas is due
to the instability of ocean currents. The major component of uncertainty in the gridded
satellite altimeter analyses is due to sampling error, for which estimates are developed and
verified. INDEX TERMS: 4556 Oceanography: Physical: Sea level variations; 4215 Oceanography:

General: Climate and interannual variability (3309); 4259 Oceanography: General: Ocean acoustics; 4520

Oceanography: Physical: Eddies and mesoscale processes; 4512 Oceanography: Physical: Currents;
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1. Introduction

[2] The use of observations in climate research normally
requires data records substantially longer than most currently
available sets of satellite data. Presatellite in situ ocean data
sets, however, are too sparse to describe complete fields.
Climate researchers hope to fill in these fields using data
assimilation. It is essential to learn as much statistical and
dynamical information as possible from the satellite data
sets in order to create a more accurate extension of such data
sets back into the presatellite era.
[3] Detailed analyses of the global surface ocean

are available for the period after 1992 because of the
high-quality and spatially expansive data coverage of the
TOPEX/Poseidon (T/P) altimetry [Behringer et al.,
1998; Carton et al., 2000a, 2000b; Fukumori et al., 1999],
but existing analyses of the earlier period [Smith, 2000;
Cane et al., 1996; Reverdin et al., 1996] are less
well validated and arguably of lower quality. In the case

of the tropical Pacific Ocean, the lack of long high-
quality data sets limits our ability to improve El Niño-
Southern Oscillation (ENSO) prediction techniques [Chen
et al., 1998, 2000].
[4] Large-scale month-to-month variability of sea level

height in the tropical Pacific Ocean is important for many
reasons, perhaps the most prominent one being a close
connection of this variability to ENSO. Tropical sea level
height, because of its dynamical connection to the ther-
mocline depth, arguably carries the most potent predictive
signal for ENSO forecasts. Perhaps because of that, a
simple intermediate model, like LDEO4 [Zebiak and
Cane, 1987; Chen et al., 2000] still can predict ENSO
about as well as state-of-the-art coupled general circulation
models (GCMs). State-of-the-art GCM-based schemes of
ENSO prediction [Schneider et al., 2003] initialize the
ocean component with the states obtained by the assimi-
lation of observed temperature profiles into a surface flux
driven ocean GCM.
[5] For the goal of climate prediction it is important to

bring the wind-driven ocean model component into a
realistic state by means of data assimilation. However, it
is necessary to distinguish between errors in the observed
sea surface height and contributions to the signal by
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processes not simulated by the model, whose grid size is
usually much larger than the observational footprint.
[6] In this paper we focus on the tropical Pacific sea level

height anomalies. After a description of data and methods
(section 2), we present in section 3 analyses of the tropical
Pacific sea level anomaly fields which combine a wind-
driven linear ocean model by Cane and Patton [1984] with
a few different sets of sea level observations using a reduced
space optimal smoother [Kaplan et al., 1997]. These results
are compared to the monthly T/P altimetry fields from
Cheney et al. [1994], which have a spatial resolution of
4� longitude and 1� latitude. We discuss our ability to
constrain sea level height anomalies on these spatial and
temporal scales and refer to the corresponding gridded
values as ‘‘signal’’. A persistent pattern of seemingly
irreducible error variance which emerges from these com-
parisons is shown to dominate the differences with the T/P
altimetry for a wide variety of products from ocean models
and data assimilation systems (section 3). We show that this
pattern can be traced to the small-scale variability (SSV) in
sea level height which we define as the variability on scales
smaller and shorter than those of the ‘‘signal’’ (section 4).
Incomplete sampling of this variability is responsible for a
large part of the error in the gridded altimetry product. Thus
we obtain an error estimate for the T/P altimetry product of
Cheney et al. [1994], and verify it by the altimetry product
of Ducet et al. [2000] and tide gauge data. In section 5 we
calculate the pattern of SSV in surface winds, and use
Monte Carlo experiments with a linear ocean model to infer
that most of the observed SSV in sea level heights is driven
by that in surface winds. Areas where high-energy SSV
cannot be modeled as wind-driven are associated with
eastward ocean currents, particularly North Equatorial
Countercurrent (section 6). We show that the SSV can be
separated into its temporal and spatial components whose
ratio has an almost zonally uniform meridional structure,
determined by the dispersion relations of the ocean waves
(section 7). In the discussion of section 8 we connect SSV
with a well-known pattern of the mesoscale eddy energy
and demonstrate that models heavily underestimate this
variability, even if they are of high-resolution and are driven
by momentum flux fields with adequately represented short-
term and small-scale variability. Thus the underestimation
of the SSV translates into an inhomogeneous pattern of
systematic underestimation of variance in the ocean models.
Consequences of this error for data assimilation systems and
ways to obtain more adequate estimates for model and
altimetry data error are discussed in section 8 as well.
Conclusions are presented in section 9.

2. Data and Methods

2.1. Definition of Signal and Small-Scale Variability

[7] In nature there is variability of physical variables on
all spatial and temporal scales. To facilitate its use, a
variable is usually represented by a grid of its averages
over corresponding space-time bins. Scientists usually pay
attention to the variability of the bin averages (which for the
purpose of this paper we will call ‘‘signal’’), although the
small-scale variability (SSV) inside the bins is important for
many practical purposes as well. Note, that this division of
the total variability of a physical variable into signal

variability and SSV depends on the space and time dimen-
sions of a chosen bin.
[8] To make the presentation of our results unambiguous,

we introduce the following notation. We will use square
brackets not only for zonal averages as by Starr and White
[1954], but for averages over any space-time regions; for
example, [s]G�T is the mean of variable s over the space-
time bin G � T (‘‘signal’’). Then sG�T (s), the SSV of s, is
the root-mean squared (RMS) deviation of s from its mean
[s]G�T. Angle brackets denote statistical ensemble averag-
ing. In practical calculations, under the ergodicity assump-
tion, we use averaging over a temporal sample (thus the
resulting estimates are affected by the sampling error). For
example, hs2G�T (s)iall T is the variance inside G � T bins
averaged over all time periods T available for the spatial grid
box G.

2.2. Altimetry Data

[9] As a benchmark for comparisons we use the gridded
T/P altimetry product of Cheney et al. [1994], which is
available as 4� longitude by 1� latitude averages. Each
4�� 1� bin is sampled between 2 and 4 times every 10 days,
providing 6 to 12 altimetry values per month.
[10] We also use sea level height anomaly estimates by

Ducet et al. [2000] that merge T/P and ERS-1, 2 measure-
ments via an advanced global objective analysis. The
resulting fields are of high resolution (0.25� � 0.25� �
10 days) but have a temporal gap from 24 December 1993
to 24 March 1995, when ERS-1 was flying along non-
repeating tracks. Therefore this product is used for the
verification of error estimates we develop and in the
analysis of section 7, where high resolution is necessary.

2.3. Anomaly Comparison

[11] All comparisons are done for the period October
1992 to March 2001, when the altimetry product is
available or for the period of its longest overlap with a
model product period. Since it is the interannual variability
that is being studied here, when a pair of data sets is being
compared, their mean monthly seasonal cycles for the
longest common time period are estimated and subtracted
from each of them.

3. Performance of Model Products

[12] We start by evaluating the performance of a simple
linear wind-driven model for sea level height anomalies.
The model has 2� zonal by 0.5� meridional resolution and
uses the Cane and Patton [1984] numerical algorithm for
solving the linear long-wave approximation to the shallow
water equations on the equatorial b plane. The model
assumes a uniform density profile and uses the first two
baroclinic modes to construct the solution. This linear
model has no thermodynamics or salinity; it is forced by
the smoothed and detrended monthly pseudostress anoma-
lies derived from the Florida State University (FSU) anal-
ysis [Stricherz et al., 1997].
[13] Figure 1a shows by comparison with the T/P altim-

etry [Cheney et al., 1994] that even such a simple model,
with no sea level height data assimilated, is not totally
without skill. Model simulation of monthly anomalies
averaged into 4� � 1� grid boxes are within 5–8 cm of
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the altimetry anomalies, and there are narrow strips in which
the wind-driven model achieves 2–4 cm accuracy.
[14] For assimilating observations into this model we

employ the reduced space optimal smoother (RSOS)
[Kaplan et al., 1997], which uses all available data (past,
present, and future) to estimate the model state at each
assimilation step (once a month). In the RSOS we employ
the same covariance settings and assumptions on model and
data error used by Cane et al. [1996] and Reverdin et al.
[1996] (with a reduced space of 32 degrees of freedom).
Our in situ data are either measurements from 34 tide gauge
stations in the tropical Pacific as by Cane et al. [1996] or
dynamic heights estimates from a few hundred temperature
profiles (mostly expendable bathythermographs and TAO
moorings) as by Reverdin et al. [1996].
[15] Assimilation of just 34 tide gauge records for the

entire tropical Pacific area results in impressive improve-
ment of the hindcast product (Figure 1b). Assimilation of a
few hundred temperature profiles produces a similar over-
all improvement with a somewhat different spatial struc-
ture which reflects the main patterns of data availability
(Figure 1c).

[16] In the case of the full grid assimilation system,
assimilating altimetry for every ocean grid point can bring
the analysis results as close to the assimilated data as one
deems necessary: the level of the system’s ‘‘belief’’ in the
data is determined by the assumed model-to-data noise
variance ratio. In the case of the reduced space data
assimilation, however, we can correct the model only by
the fields from a low-dimensional linear subspace. All
patterns which are orthogonal to this subspace belong to
‘‘effective’’ (for this system) observational error; the anal-
ysis fields cannot possibly get any closer to the assimilated
data than to within the size of this error [Cane et al.,
1996].
[17] As Figure 1d demonstrates, a drastic improvement

due to T/P altimetry assimilation happens only on the
equator and in the southeastern part of the domain. While
assimilation of the altimetry brings the solution closer to it
virtually everywhere (to within 4.0 cm on average), more
than a half of the improvement over a purely wind-driven
solution (whose average RMS difference from the T/P data
is 5.9 cm) is captured by the assimilation of the data from
the sparse in situ networks: average RMS difference from

Figure 1. Comparison with the TOPEX/Poseidon altimetry [Cheney et al., 1994] of sea level height
anomalies from a linear anomaly model for the tropical Pacific Ocean [Cane and Paton, 1984]. Shown
are 1993–2000 RMS differences for four model products: (a) with no sea level height assimilation at all
and optimal smoother products assimilating either (b) 34 tide gauge records, (c) dynamic heights from the
data set of temperature profiles (XBT, BT, and TAO), or (d) the TOPEX altimetry. In all cases the model
is forced by the monthly pseudostress anomaly from FSU [Stricherz et al., 1997].
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T/P is 5.0 cm for the assimilation of tide gauges and
4.9 cm for the assimilation of temperature profiles.
Assimilation of the altimetry further improves estimates
but only to a point: it has limited influence on the high-
RMS differences in the zonally elongated areas in the
northwestern and southwestern parts of the domain and in
a band near 10�N in the eastern part of the basin. High
values in these areas are characteristic of the standard
deviation pattern for the portion of T/P altimetry fields
which does not project on our set of corrections; that is,
this portion cannot be represented through the patterns of
variability produced by the linear model under the FSU
wind forcing.
[18] It might appear likely that it is our data assimilation

methodology (a restricted low-dimensional set of correc-
tions) and the simplicity of the model itself which are
responsible for the inability of the assimilation procedure
to approach the altimetry product more closely. Testing this
idea, we compare T/P altimetry with simulation and assim-
ilation products from a few state-of-the-art GCMs.
[19] The OGCM comparisons are presented in Figure 2.

The NCEP product of Behringer et al. [1998] uses a Pacific
basin version of MOM1 and the Derber and Rosati [1989]
scheme to assimilate temperature profiles and altimetry. The
results are no closer to the T/P data than the assimilation
into the linear model (Figure 1d), spatially averaged RMS
difference being 4.0 cm as well.
[20] Fukumori et al. [1999] developed a sophisticated

assimilation system for a global domain MOM1 model.
Their simulation uses forcing by daily winds and monthly
climatological heat fluxes from the NCEP analysis. The
assimilated version combines the model with along-track
T/P altimetry values binned with 2.5� latitudinal resolution.
This product is available for 3 years (1993–1995). The
comparison shows 3–4 cm RMS difference for the simula-
tion and 1.5–3 cm difference for the assimilation in most of
the domain (spatial averages are 4.4 cm and 3.4 cm
respectively). The pattern that we identified earlier can be
seen in these plots as well.
[21] The high-resolution POCM 4C model [Tokmakian

and Challenor, 1999; Semtner and Chervin, 1992] driven
by daily fluxes from the ECMWF (reanalysis before 1994
and the operational analysis starting from 1994) also shows
this pattern, although embedded into a more complicated
pattern of other model errors (average RMS difference is
5.26 cm).
[22] The Carton et al. [2000a, 2000b] global ocean

analysis uses the Derber and Rosati [1989] scheme to
assimilate all available in situ and altimetry data. Compar-
isons of the T/P altimetry with two of their products, one
which assimilates only in situ data, and another which uses
the altimetry as well, both show the same pattern of
maximum differences, though the altimetry assimilation is
very close to the T/P altimetry data (spatially averaged RMS
differences are 4.4 cm and 2.9 cm respectively).
[23] Therefore the estimates of sea level height anomaly

fields produced by a variety of ocean models and data
assimilation systems differing dramatically in their degree
of sophistication all show spatially similar features in their
pattern of differences from the T/P altimetry: zonally elon-
gated maxima in the northwest and southwest tropical Pacific
Ocean, a narrow band of high variance near 10�N slightly

inclined toward the equator from the Central American coast,
and low values on the equator and in the southeastern tropical
Pacific. Either the problem lies with the altimetry fields, or
there must be some similarity in the problems these models
have with simulating sea level height variability. The latter
makes the errors in wind forcing a prime suspect. These two
possible problems, error in the altimetry and wind fields, are
investigated in the next two sections.

4. SSV and Error of Gridded Altimetry Products

[24] Figure 3a shows that the error pattern identified in the
previous section is remarkably similar to thepatternof theSSV
in the ocean surface height, which we define here as the
variability inside 4� � 1� monthly bins. The gridded 4� � 1�
altimetry product by Cheney et al. [1994] is constructed as
averages of the values from those 6 to 12 TOPEX tracks that
pass through each 4�� 1� grid box everymonth.Here, instead
of taking averages, we compute the SSV from a sample of
these 6–12 values for each grid box and month. The results
were averaged over all months in the period from October
1992 to March 2001 to estimate the SSV (Figure 3a).
[25] The influence of this variability on the grid

box average adds a sampling error to the error of individual
altimetry values. Since an estimate involves averaging
of N observations, it is affected by a sample error whose
standard deviation can be estimated as s4��1��1 month=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4��1��1 month

p
, assuming optimistically that all N alti-

meter passes in the month T sample uncorrelated devia-
tions of the sea surface height from its grid box mean
[s]4��1��1month. By averaging monthly error estimates
over the entire time period, we obtain an estimate
r4��1��1 month ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24��1��1 month=N4��1��1 month

� �
all months

q
of the

sampling error contribution to the total error of the Cheney
et al. [1994] gridded altimetry product (Figure 3c). The
values r4��1��1 month provide a lower bound to the error in
the gridded fields, because they account for only one of the
possible error sources (sampling error), and in computing
the latter we assumed that errors of individual track values
are uncorrelated. This optimistic estimate may require
inflating by some factor a > 1 to become more realistic.
[26] To estimate the size of a, we compare T/P data with

tide gauge measurements from the Sea Level Data Center
at the University of Hawaii. We use monthly sea level
height anomalies sg (tidal variations removed and correc-
tions for the inverse barometer effect applied) at 31 stations
which have more than 8 years of data during the T/P period
and are located inside 4� � 1� Cheney et al. [1994] grid
boxes with more than 6 track crossings per month on
average.
[27] For a given station g the squared difference d2g ¼
sg � s½ 	4��1��1 month

� �2D E
all months

is expected to satisfy

d2g ¼ a2r24��1��1 month þ r2g; ð1Þ

where rg is the RMS error of tide gauge values as estimators
of the grid box mean. Figure 4a illustrates for Christmas
Island the contrast between monthly sea level height
anomalies from either source (T/P or tide gauge records)
and individual altimetry passes, whose scatter reflects both
the SSV and the altimetry net error.
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[28] Figure 4b shows dg versus r4��1��1 month for all
31 stations. As expected from equation (1) with a  1,
the former exceeds the latter: all circles are higher than the
solid line. With dg and r4��1��1 month computed, equation (1)
gives a constraint on a and rg (Figure 4c). For all but 4 of
the stations a must be less than 2.3. Of the remaining 4,
which allow a > 3, three (Johnston, Rarotonga, and Hilo)

are located at around 20� latitude where the comparison is
known to be problematic [Mitchum, 1994] because sea level
height variability is dominated by planetary waves that are
slow enough to create significant phase shifts between the
tide gauge and altimetric values. (The remaining outlier is
Nauru.) The inflation factor a = 1.5 corresponds to the
median tide gauge error of a modest size rg = 1.43 cm.

Figure 2. Comparison with the TOPEX/Poseidon altimetry [Cheney et al., 1994] of sea level height
anomalies from six GCM products. Shown are RMS differences for the NCEP MOM1 version for the
Pacific Ocean, assimilating temperature profiles and TOPEX altimetry [Behringer et al., 1998] (1993–
2000); 1/4� simulation from version POCM 4C of Semtner/Chervin model [Tokmakian and Challenor,
1999] (1993–1998); simulation and assimilation of altimetry into a MOM1 version by Fukumori et al.
[1999] (1993–1995); and assimilations into the MOM1 by Carton et al. [2000a, 2000b].
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[29] To further verify the spatial structure of our error
estimates we compute RMS differences between the Cheney
et al. [1994] altimetry product and sea level anomaly
estimates by Ducet et al. [2000] that merge T/P and
ERS-1, 2 measurements (Figure 3d). We expect the error
of the Ducet et al. [2000] product to be significantly
smaller than that of Cheney et al. [1994], since they use
more data. We also expect the error of the two analyses to
be positively correlated, since T/P altimetry data is used
by both. Consistent with that, the pattern of the RMS
difference field is similar to the pattern of error estimates,
the former values exceeding the latter on average by only
6%. Since our estimates of the T/P error do not require
inflation by a factor significantly higher than a = 1.5,
their relatively small size suggests that there is much more
to the model-altimetry differences than just the altimetry
error.

5. SSV in Surface Winds and Sea Level Height
Response

[30] Figure 5a shows the small-scale, short-term variabil-
ity of the surface zonal wind calibrated to a height of 10 m
above the ocean surface for neutral stability conditions

(level 3.0 NSCAT data [Jet Propulsion Laboratory (JPL),
1998]). The calculation is similar to that done for the sea
level height variability in the previous section, except that
for the wind we use 4� � 4� monthly bins. This wind
variability pattern is impressively more complete than that
computed on the basis of ship data from COADS [Woodruff
et al., 1998] (Figure 5b): places with poor data coverage
show no variability. The meridional wind exhibits a similar
spatial pattern of SSV (not shown).
[31] Figure 5 suggests that any gridded wind stress

analysis produced from observations of incomplete tempo-
ral and spatial coverage will be affected by the error with a
spatial variance pattern similar to that of the SSV. This error
corresponds to the SSV in the wind removed by the wind
stress gridding procedure. It has short spatial and temporal
decorrelation scales.
[32] We estimate sptx, the standard deviation of the

corresponding SSV in the zonal pseudostress, by multiply-
ing the pattern of Figure 5a by the climatological wind
speed pattern evaluated from daily data of the NCEP-NCAR
reanalysis [Kalnay et al., 1996]. Maxima of this pattern
seem to roughly correspond to the maxima in the sea level
height SSV (Figure 6a), suggesting that the former is
causing the latter.

Figure 3. Small-scale, short-term variability and resulting error in sea level height anomaly (in
centimeters). Shown are variability RMS from (a) the T/P track data and (b) a high-resolution model
(POCM 4C); (c) derived error RMS estimates for the gridded Cheney et al. [1994] T/P fields; and
(d) RMS difference of two altimetry products.
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[33] To explore the causality hypothesis further, we
generated random fields intended to represent the SSV in
the pseudostress and forced the Cane and Patton [1984]
linear ocean model (2� � 0.5� � 0.25 month resolution)
with it. Following Miller et al. [1995] we simulate the
error in wind-forcing by a random multivariate Gaussian

error e(x, y, t) in the pseudostress components with
covariance

eh x1; y1; t1ð Þe x2; y2; t2ð Þi ¼ W x1; y1ð ÞW x2; y2ð Þd t1 � t2ð Þ
� e� x1�x2ð Þ2=L2x� y1�y2ð Þ2=L2y ; ð2Þ

Figure 4. Validation of T/P error estimates by comparison with the tide gauge records, October 1992 to
March 2001. (a) Monthly tide gauge sea level height anomalies at Christmas Island (dashes) compared
with altimetric measurements from the corresponding grid box (centered at 2�N and 158�W) of the Cheney
et al. [1994] T/P product. Dots show values from individual altimetry passes, and the solid line shows their
monthly averages for this grid box. Temporal RMS values of the intrabox variability s4��1��1 month inside
the grid box, the sampling error estimate r4��1��1 month for the grid box mean, and the RMS difference
between the grid box and tide gauge monthly means d are indicated as well. (b) Circles show the RMS
differences between individual tide gauges and T/P bins versus the estimated error in bin averages. They
would fall along the solid line if the only errors were the ‘‘optimistic’’ estimate of T/P errors. The dashed
line inflates these optimistic estimates by a factor of 1.5. (c) Thin lines show constraints on the inflation
factor a and tide gauge error rg imposed by equation (1) for individual tide gauges. The thick line shows
the median constraint with the point a = 1.5 indicated.

C02001 KAPLAN ET AL.: SMALL-SCALE VARIABILITY AND ERROR

7 of 17

C02001



where W is the spatially variable standard deviation of the
estimated pseudostress SSV (contours in Figure 6a). Wind
errors at different time steps (1/4 month here) are taken to be
uncorrelated, while the spatial covariance structure is
controlled by decorrelation scales Lx = Ly = 1�. We choose
1� since the decorrelation scales of SSV should be less than
the grid dimensions. An independent pseudostress field
(both zonal and meridional components) was generated at
each model time step.
[34] Figure 7a presents the sea level height response of

the ocean model in terms of the variability inside 4� � 1�

monthly bins
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24��1��1 month sð Þ
� �

months

q
(SSV averaged

over the entire Monte Carlo run of 2000 months) and
Figure 7c presents the RMS of the means of these bins

smonths([s]4��1��1 month) (signal variability). The simulated
spatial pattern of the SSV (Figure 7a) contains the major
features of the observed pattern but underestimates its
amplitude by a factor of 2 because of the relative coarseness
of the model grid and the omission of all variability mecha-
nisms but the long planetary waves (Figure 6b). The vari-
ability at signal resolution has a similar spatial structure
and only slightly weaker magnitude (Figure 7c).
[35] The spatial scale of random wind variability has a

large impact on the structure of the sea level height
response. Figures 7b and 7d illustrate sea level height
variability obtained in response to the random wind fields
with the same spatial pattern ofW as was used for Figures 7a
and 7c, but with much longer spatial decorrelation scales:
Lx = 20�, Ly = 10�. The SSV and signal variability patterns

Figure 5. Small-scale and short-term variability for the surface zonal wind estimated from two different
sources: (a) satellite scatterometry data and (b) ship records from COADS.

Figure 6. SSV in pseudostress and sea level height response: (a) Contours of SSV RMS in zonal wind
pseudostress (m2/s2) are shown over the color pattern of Figure 3a; (b) same as Figure 6a but for contours
of the SSV RMS in the sea level height response of a linear model to the random wind with 1� spatial and
0.25 month temporal decorrelation scales.
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are quite dissimilar in this case, with the latter resembling
the variability of the response to the ‘‘signal’’ in wind, i.e.,
the RMS pattern of sea level height interannual anomalies.
Both, however, are very different from the variance pattern
for the response to the spatially uncorrelated wind shown in
Figures 7a and 7c.

6. Influence of Eastward Currents

[36] Figure 6b identifies the most prominent feature
which is omitted from the simulation: a zonally elongated
area of high sea level height variability between 170�Wand
110�Wat around 5�–8�N. Another maximum of variability,
located to the northeast of this area, near the Central
American coast, is simulated very weakly. Note that these
areas are associated with the North Equatorial Countercur-
rent (NECC). Indeed the sea level SSV is colocated with the
area of strong eastward currents indicated by positive zonal
velocities at 7.5 m in the ocean analysis by Carton et al.

[2000b]. Moreover, the current strength and the sea level
SSV manifest a similar timing within the seasonal cycle
(Figure 8): the NECC and the SSV in its area both are very
weak in the spring (aside from the westernmost part), then
pick up strength during the summer, reach their maximum
intensity in the fall, and stay strong throughout the winter.
Since the areas of high sea surface height variability are near
the southern edge of the NECC, this variability might be
caused by the horizontal shear between the NECC and the
westward South Equatorial Current (SEC) immediately to
the south [Giese et al., 1994].

7. Decomposition of Sea Level Height SSV

[37] We took advantage of the fine resolution (0.25� �
0.25� � 10 days) of the Ducet et al. [2000] fields to
compute temporal and spatial components of SSV into
which the total SSV can be separated: s4��1��1 month

2 (s) =
s1 month
2 ([s]4��1�) + [s4��1�

2 (s)]1 month. Since there were only

Figure 7. Simulation of sea level height error and SSV in Monte Carlo experiments with a linear model
forced by noise designed to imitate errors in the wind forcing. Shown are RMS model responses (cm) to
the noise forcings with short (Lx = Ly = 1�) and relatively long (Lx = 20�, Ly = 10�) spatial decorrelation
scales. Temporal decorrelation scale is 0.25 month.
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3 temporal samples per month, the temporal variance
estimates were multiplied by 3/2 to produce an unbiased
estimate [Mardia et al., 1979].
[38] The pattern of s4��1��1 month computed from Ducet et

al. [2000] values for each 4�� 1�� 1 month bin (Figure 9a)
is quite similar to the one computed from T/P track data
(Figure 3a). Comparison of temporal and spatial variability
patterns indicates that the northwestern and southwestern
variability maxima are dominated by spatial variability. In
contrast, the eastern Pacific variability band near 10�N is
divided into two parts: the northeastern part near the Central
American coast is dominated by the spatial variability,
while the band at 5�–8�N between 170�W and 110�W
predominantly involves temporal variability of the bin
spatial means. This division is consistent with two different
variability mechanisms (wind bursts and instability waves)
in these two adjacent areas as suggested by Giese et al.
[1994].
[39] The ratio of temporal to spatial variability g =

s1 month ([s] 4��1�)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24��1� sð Þ
	 
q

1 month
manifests an almost

zonally uniform meridional variability structure (Figure 9d).
The reason for this is that high temporal-to-spatial variabil-
ity ratio is only produced by long waves with relatively
short periods, and such waves propagate predominantly at
the low latitudes. Figure 10 demonstrates that the observed

zonal means of this ratio can be explained by the combined
contribution of Rossby and short-period (mostly inertia-
gravity) waves. Details of this estimation are given in
Appendix. Note that the Rossby wave ratio gR captures
the transition from g < 1 (spatial variability dominates)
to g > 1 (temporal variability dominates) approximately
correctly but manifests too steep a change with the latitude.
The contribution from the short-period waves makes the
latitudinal change more realistic.
[40] The observed peak at around 5�N is due to the area

of instability waves associated with the NECC. These
waves have the longer wavelengths than the waves propa-
gating in stable conditions at these latitudes. Similarly, the
equator and most of the coastal areas (see Figure 9d) have
higher values of g than their surroundings since the equa-
torial and coastal Kelvin waves are likely to have larger
lengths than Rossby waves at the same latitude.

8. Discussion

[41] The results presented above gain us some insights
into the problems that are common to a wide range of the
ocean model simulations and assimilations. They also
provide practical constraints on the error in the model and
observational sea surface height data sets needed in optimal
data assimilation procedures.

Figure 8. Seasonal means of zonal velocity [Carton et al., 2000b], cm/s (contours), are shown over
seasonal SSV estimates for sea level height (colors). Only positive (eastward) velocity values are
contoured. The sea level SSV is estimated from T/P data in the same way the estimation of the Figure 3a
was done, except the temporal averaging is done selectively over the seasons: (a) December-January-
February (DJF)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24��1��1 month

� �
DJF

q
, (b) March-April-May (MAM)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24��1��1 month

� �
MAM

q
, etc.
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8.1. Sea Level Height SSV and Eddy Kinetic Energy

[42] The pattern of the T/P SSV (Figure 3a) is similar to
the tropical Pacific portion of what has long been known as
a global pattern of mesoscale variability, or eddy energy.
Comparison with Plates 8 and 10 of Ducet et al. [2000]
shows that aside from the equator, where the geostrophic
velocities tend to infinity, our pattern of sea level height
SSV resembles the structure of the variance in their seasonal
cycle of the eddy kinetic energy (EKE).
[43] The similarity between the patterns of SSV and EKE

is interesting and was noted before [e.g., Stammer, 1997].
The former is a basic statistical characteristic of a contin-
uous sea level height field, of prime importance for our error
analysis; the latter is a basic dynamical characteristic of the
ocean, used for describing its mesoscale variability. They
are computed differently, but they both reflect the intensity
with which nearby values can differ from each other. For
an explicit mathematical relation between these two see
A. Kaplan (Eddy kinetic energy and small-scale sea level
height variability, submitted to Journal of Physical Ocean-
ography, 2003 (available as preprint 1913 from Institute for
Mathematics and its Applications, http://www.ima.umn.edu/
preprints/mar2003/1913.pdf)).

8.2. Causes for the SSV and Its Modeling

[44] Connection between the SSV and the EKE pattern
suggests that the latter indicates not only bona fide eddies,
but the variability on all scales and all levels of strength,

including linear ocean waves, i.e., perturbations weak
enough not to cause nonlinear effects to become significant.
(Rossby waves are sometimes called ‘‘weak’’ eddies).
Maxima in the northwestern and southwestern parts of the

Figure 9. Separation of space-time sea level height SSV into temporal and spatial components for
Ducet et al. [2000] 0.25� resolution 10 day gridded altimetry fields. See text for explanations.

Figure 10. Zonal averages for the ratio of temporal to
spatial variability estimated from the Ducet et al. [2000]
analyzed altimetry fields (thick solid line) and the
theoretical estimates via equations (A3), (A7), and (A8) as
described in section A5 (thin solid line, dashes, and dots
correspond to a = 1,0, and 1, respectively).
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tropical Pacific domain are usually viewed as areas of
intense eddy activities because of the shear between
equatorial currents and subtropical countercurrents. While
we do not dismiss this general perception, our Monte
Carlo experiments with the linear model suggest that linear
waves generated by the month-to-month uncertainty in
winds with short spatial decorrelation scale can partially
explain (Figure 6b) variability in these regions. At least
half of the variability RMS can be obtained as a direct
response to the local SSV in the wind stress. However, a
close inspection of the northwestern area (Figure 6b)
reveals a notable difference between observations and a
simulation: a variability maximum at 20�N is not repro-
duced by the linear model, since its variability increases
uniformly toward the northwest, as the variance carried by
the Rossby waves is getting ‘‘piled up’’ in that direction.
The maximum variability which in fact takes place at
20�N is of seasonal and nonlinear nature: instabilities
intensify in June and July when the Subtropical Counter-
current strengthens while its density contrast with the
surrounding water masses diminishes [Qiu, 1999; Ducet
et al., 2000].
[45] The interpretation of the eastern Pacific SSV band is

more complicated. In fact, it consists of two distinct pieces
(Figure 3a): an area to the north of 10�N from 110�W to the
South American cost, and a narrow band at around 5�–8�N
between 165�Wand 110�W.Giese et al. [1994] identified the
first piece as the area of strong anticyclonic eddies generated
by intense wind bursts across the Gulfs of Tehuantepec and
Papagayo. The variability in the second was attributed to the
activity of the tropical instability waves which form just south
of the NECC; the variability maximum at 5�–8�N corre-
sponds to the areas where horizontal shear between NECC
and SEC is likely to be high (Figure 8). This maximum is
completely missed in our Monte Carlo experiments, empha-
sizing the importance of the instability mechanisms com-
pared to the local wind forcing. This area is also identified by
a particularly high ratio of temporal to spatial variability
(Figure 9d) pointing toward the predominance of very long
waves in this area.
[46] Simulation of the SSV due to currents’ instabilities

needs a high-resolution non-linear model. For example, for
the 0.25� resolution POCM 4C model [Tokmakian and
Challenor, 2001] all maxima in SSV are either in the
areas of eastward currents (e.g., NECC) or near islands
(Figure 3b). However, the major variability maxima due to
the wind in the northwestern and southwestern corners of
the tropics are almost completely missing. At the same time,
some variability is produced seasonally in the area of
NECC termination, north of 10�N from 120�W to the South
American cost. In our Monte Carlo experiments (Figure 6b)
this variability maximum is modeled very weakly. One can
expect this if it is the intense eddy-generating wind bursts
that are responsible for most of the SSV there. On the other
hand, the POCM 4C simulation suggests that the instability
mechanisms could be contributing to this variability as well.

8.3. Error in Model Products

[47] A large part of the variability responding to small-
scale wind-forcing can be modeled linearly (Figure 6b),
even though an eddy resolving model would be needed to
simulate the response in its complete intensity. Simulation

of the current instabilities requires a nonlinear model; for
example, note the absence of an error maximum there in the
NCEP assimilation run (Figure 2).
[48] SSV in the model sea level height, and in nature,

depends on the smoothness of the wind field (compare
Figures 7a and 7b). High-resolution models underestimate
the sea level height SSV, even when driven by winds with a
good representation of short-term and small-scale variabil-
ity. As noted above, POCM 4C run driven by daily fluxes
from the ECMWF almost completely omits areas of wind-
driven SSV in the northwestern and southwestern tropical
Pacific, only variability due to currents’ instability gets
simulated (compare Figures 3a and 3b). This underestima-
tion is most likely due to the friction parameterization in
ocean GCMs, which overly damps smaller scales.
[49] Underestimation of the SSV by the model products

seems to be connected to underestimation of signal vari-
ability in the same areas. Areas of high variability poleward
of 20� in the tropical western Pacific, present in Figure 11f,
are missing in other panels of Figure 11. Not producing
variability at all, of course, results in the error, and this error
type is particularly difficult to correct by the data assimila-
tion procedures: depending on the assimilation technique,
data corrections in such areas either just attenuate in time, or
are not allowed at all.
[50] In other words, the pattern of the error in an

assimilation product includes all areas where the signal
variability is undersimulated or misrepresented because of
the errors in the forcing or inadequacy of the parameteriza-
tion of subgrid processes. These areas include most of the
places where the SSV in the ocean is high. Simulation error
patterns additionally include areas where the signal vari-
ability is high, since the model response to wind products’
errors having long (signal-like) decorrelation scale has a
pattern similar to the response to large-scale wind signal.
Simulation error for the linear model (Figure 1a) contains
the features of the error patterns responding to the random
wind fields with both short and long decorrelation scales
(Figures 7b and 7d). Fukumori et al. [1999] assumed that
the wind error had a spatial covariance proportional to the
covariance of the observed winds and a short temporal
decorrelation scale. The model error obtained in response to
such a wind (their Plate 1d) has some features which
resemble the signal variance, for example, equatorial max-
imum in the tropical Pacific.

8.4. Error in the Gridded Altimetry Fields

[51] The error map for the altimetry product by Cheney et
al. [1994] (Figure 3c) was developed here on the basis of
the SSV estimates and only accounts for the sampling error
in grid box averages. Yet the comparison with another
satellite product, which uses more data [Ducet et al.,
2000] (Figure 3d), and with in situ (tide gauges) data
(Figures 4b and 4c) suggests that the underestimation is
not too severe, no larger than 50% of the estimated error
RMS. In other words, sampling error is a dominant term in
this altimetry product for interannual anomalies. Gridded
altimetry error thus has many features of the SSV pattern,
the same pattern that influences the model error.
[52] Our error map resembles the tropical Pacific part of

the T/P error map produced in a different way by Fukumori
et al. [1999, Plate 1a]. It is also somewhat similar to the T/P
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error field computed by Tokmakian and Challenor [1999],
but is less noisy and by construction has no negative
variance estimates.

9. Conclusions

[53] T/P altimetry data verify that analyses of the tropical
Pacific sea level height anomaly based on assimilation of in
situ observations into a simple linear model are reasonably
accurate over most of the domain from 20�S to 20�N. The

areas of large error are near the northwestern and south-
western corners of the domain, as well as in a band around
10�N in the eastern part of the domain. A similar pattern of
differences was found in the comparison of a wide variety
of GCM simulation and assimilation products with the T/P
altimetry fields.
[54] This difference pattern was identified as the pattern

of high SSV in the tropical sea level height. Accordingly,
the gridding error in the T/P altimetry product has a similar
structure. However, since it is smaller in size, the error of

Figure 11. Sea level height anomaly RMS, cm, from different sources: (a) wind-forced and (b) TOPEX-
assimilated runs of the linear model by Cane and Patton [1984] (correspond to Figures 1a and 1d);
assimilations of in situ data and TOPEX altimetry (c) by NCEP [Behringer et al., 1998] and (d) by
Carton et al. [2000b]; simulation with (e) POCM 4C [Tokmakian and Challenor, 1999]; and (f ) gridded
TOPEX sea level height anomaly [Cheney et al., 1994].
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model products must have this structure as well. The
explanation is that (1) most of the features of this pattern
of variability can be caused by the SSV (and error) in wind,
and (2) most GCMs underestimate SSV even if driven by
wind forcing with enough of such variability (possibly
because of dissipation schemes that overdamp small scales)
and, as a result, underestimate variability on assimilated
scales as well; and (3) areas of high error which are not
associated with local wind SSV are those of high shear and
current instabilities in the ocean, and have their own host of
simulation problems. In other words, we have used SSV to
present a ‘‘model invalidation’’ study (and an answer to
Oreskes et al. [1994], who ‘‘have never seen a paper in
which the authors wrote ‘the empirical data invalidate this
model’ ’’).
[55] Systematic underestimation of variance by the ocean

models should be taken into account by data assimilation
systems. Comparison of Figures 11a and 11b with Figures 7a
and 7c suggests a possible solution: to evaluate model error
covariance from the run forced by the observed wind which
is perturbed by a specially designed short-scale noise.
Covariance estimated that way will allow large data-driven
corrections in the areas where noise forcing can drive
variance high.
[56] The structure of the noise used for error modeling

matters a great deal. Figure 7 shows two contrasting types
of error patterns: in response to small-scale noise and to
large-scale error.
[57] It is of great use for El Niño predictions to be able to

improve the hindcasts of the tropical Pacific sea level heights
anomalies [Cañizares et al., 2001]. This goal can be
achieved via optimal tuning of data assimilation system for
the tropical Pacific Ocean on the basis of the satellite period,
when detailed information on the small-scale behavior of the
tropical Pacific ocean-atmosphere system is available.

Appendix A: Ratio of Temporal and Spatial
Variability

A1. Individual Waves

[58] Suppose a wave of a unit amplitude

s ¼ ei kx�wtð Þ

with a wave number k = 2p/L and frequency w = 2p/T
propagates through a space-time bin with dimensions Lb and
Tb respectively. It is easy to calculate the following statistics
(notation as in section 2.1):

s½ 	Lb¼
1

Lb

Z Lb

0

ei kx�wtð Þdx ¼ e�iwt e
ikLb � 1

ikLb
;

s½ 	Lb�Tb
¼ 1

Tb

Z Tb

0

s½ 	Lbdt ¼
1

kLbwTb
1� eikLb
� �

1� e�iwTb
� �

;

s2Lb sð Þ ¼ sj j2
h i

Lb
� s½ 	Lb
��� ���2¼ 1� eikLb � 1

kLb

����
����
2

¼ 1� 2 1� cos kLbð Þ
kLbð Þ2

:

Since the last expression does not depend on t,

s2Lb sð Þ
h i

Tb
¼ s2Lb sð Þ ¼ 1� 2 1� cos kLbð Þ

kLbð Þ2

as well. Finally,

s2Tb s½ 	Lb
� �

¼ s½ 	Lb
��� ���2

� �
Tb

� s½ 	Lb�Tb

��� ���2¼ 2 1� cos kLbð Þ
kLbð Þ2

� 4 1� cos kLbð Þ 1� coswTbð Þ
kLbwTbð Þ2

:

Since kLb = 2pLb/L and wTb = 2pTb/T, all variabilities
computed above depend only on the ratios

l ¼ L=Lb; t ¼ T=Tb;

so that the temporal-to-spatial variability ratio is equal to

g t;lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Tb s½ 	Lb

� �
= s2Lb sð Þ
h i

Tb

r
¼ C lð Þ 1� C tð Þð Þ

1� C lð Þ

� �1=2
; ðA1Þ

where we introduced

C lð Þ ¼ 2 1� cos 2p=lð Þ
2p=lð Þ2

:

Note that C(0) = 0 and C(1) = 1. Values of g are shown by
shading in Figure A1.

A2. Ratio for a Given Dispersion Relation

[59] We need to estimate g for wave packets obeying a
dispersion relation T = TD(L) in the wavelength interval
from L1 to L2. Given the ratio g, a unit of energy is
partitioned into a temporal gt and a spatial gs pieces:

gt ¼
g2

g2 þ 1
¼ C lð Þ 1� C tð Þð Þ

1� C lð ÞC tð Þ ; gs ¼
1

g2 þ 1
¼ 1� C lð Þ

1� C lð ÞC tð Þ :

Assuming power spectrum density F(k, w) we can compute
the variability ratio for the entire spectral interval by

gD L1;L2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR L2
L1

gt TD Lð Þ=Tb;L=Lbð ÞF 2p=L; 2p=TD Lð Þð ÞL�2dLR L2
L1

gs TD Lð Þ=Tb;L=Lbð ÞF 2p=L; 2p=TD Lð Þð ÞL�2dL

vuut :

ðA2Þ

A3. Combining Two Distributions

[60] To compute g in the presence of two basic wave
types with individual ratios g1 and g2, we have to know the
total variability ratio between these two wave types:

a ¼ sLb�Tb s1ð Þ=sLb�Tb s2ð Þ:

Then a unit of energy is partitioned between these two wave
types as a2/(a2 + 1) and 1/(a2 + 1), hence

g21þ2 ¼

a2

a2 þ 1

g21

g21 þ 1
þ 1

a2 þ 1

g22

g22 þ 1

a2

a2 þ 1

1

g21 þ 1
þ 1

a2 þ 1

1

g22 þ 1

¼
a2g21 g22 þ 1

� �
þ g22 g21 þ 1

� �
a2 g22 þ 1

� �
þ g21 þ 1

: ðA3Þ
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A4. Ocean Waves

[61] To attribute parameters of the actual ocean waves to
the points of the diagrams in Figure A1, we let Lb = 4� and
Tb = 1 month. Then a given dispersion relationship T =
TD(L) defines a curve on the (T/Tb, L/Lb) plane.
[62] Only zonally propagatingwaves are taken into account

here, since the meridional propagation is rarely observed
[Killworth et al., 1997]. We evaluate the propagation of the
first baroclinic mode and assume its velocity c = 2.5 m/s.
[63] The dispersion relation for Rossby waves zonally

propagating at a latitude y can be written through L and T as

T ¼ TR Lð Þ ¼ f yð Þ2L2=c2 þ 4p2

b yð ÞL ðA4Þ

[Gill, 1982]. (Unlike the wave number, we take the
wavelength L to be positive for waves propagating either
to the west or east). The minimum allowable period and
wavelength

Tmin yð Þ ¼ 4pf =bc; Lmin yð Þ ¼ 2pc=f ; ðA5Þ

are functions of latitude.
[64] Low latitudes are dominated by equatorially

trapped modes with turning latitudes yT ¼ 180� pReð Þ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þc=b

p
, where n indexes the meridional structure

of the mode, and Re is the radius of the Earth. Formula (A4)
is applicable to trapped modes as well, if f is evaluated at the

Figure A1. Ratios g of temporal to spatial variability for ocean waves. Shading shows the ratio for a
monochromatic harmonic wave with a wavelength L and a period T. White lines show dispersion
relations for ocean waves. Solid lines indicate Rossby (R) waves. Thin lines show off-equatorial Rossby
waves for different latitudes indicated at black circles that mark points with the minimum allowable wave
period for each latitude. Thick lines show the first three trapped equatorial Rossby modes. Dashed and
dash-dotted lines show equatorial Kelvin (K) and Yanai (Y) waves, respectively. White dots indicate
Poisson (P) waves for the latitudes of 5� and 29�. In order to put wave parameters on the dimensionless
diagram, Tb = 1 month and Lb = 4� are assumed.
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turning latitude yT, and b has its equatorial value (which is
very close to b(yT) for low number modes) [Cane and
Sarachik, 1976].
[65] Most of other planetary waves, i.e., Poisson (inertia-

gravity), Kelvin, and Yanai modes, have their dispersion
curves in the short-period part of the dispersion diagram in
Figure A1 (except for short-length Yanai waves). As in
Rossby wave case, the trapped Poisson modes obey the
dispersion relationship for the off-equatorial Poisson modes
if its coefficients are evaluated at the turning latitudes.
Hence the dispersion curves for the first few trapped
Poisson modes (not shown) are located in between the
two off-equatorial Poisson curves shown for the latitudes
of 5� and 29�.
[66] Therefore we have two distinct types of dispersion

relationships: T = TR(L) for Rossby waves, defined by (A4),
and T = Tsp � 0 for all other waves, which are concentrated
in the short-period part of the diagram. We use formula (A2)
to estimate g for these wave types. On the basis of the study
by Stammer [1997] we take the power spectral density of
tropical sea level heights in the form

F k;wð Þ � k�2:5w�0:5 ðA6Þ

for waves longer than 100 km with periods between 30 and
200 days. Since the spectral density (A6) favors the long
waves, Rossby waves are integrated from Lmin = Lmin( y)
(defined by (A5)) up along their dispersion curves:

gR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR Lmax

Lmin
gt TR Lð Þ=Tb;L=Lbð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTR Lð Þ

p
dLR Lmax

Lmin
gs TR Lð Þ=Tb;L=Lbð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LTR Lð Þ

p
dL

vuut : ðA7Þ

Equatorward of the turning latitude of the first equatorial
mode (5.2�) we assume the same dispersion relation as
holds at this latitude, thus gR is constant between 5.2�S and
5.2�N.
[67] For the short period waves take TD ! 0 in (A2) to

obtain

gsp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR Lmax

Lmin
C L=Lbð Þ

ffiffiffi
L

p
dLR Lmax

Lmin
1� C L=Lbð Þð Þ

ffiffiffi
L

p
dL

vuut : ðA8Þ

A5. Modeling Observed Latitudinal Profile of ;

[68] We attempt to estimate observed values of g via
formula (A3), by mixing contributions from Rossby and
short-period waves. Comparison of the variability in pentad
(five day periods) averages of 4� � 4� box means with the
day-to-day variability inside these boxes for the reanalysis
wind [Kalnay et al., 1996] showed a nearly equal amount of
energy in these two types of variability. Because of this we
assume that a roughly similar amount of energy goes into
Rossby and short-period waves, hence a = 1.
[69] Individual ratios gR and gsp are estimated numeri-

cally using (A7) and (A8). The lower integration limit in
(A8) is taken Lmin = 100 km, results not being very sensitive
to this choice. Results are, however, quite sensitive to the
upper integration limit Lmax in both (A7) and (A8). We
found that not an unreasonable latitudinal profile of Lmax

values (1900 km within 15� of the equator, 1300 km
poleward of 25�, and the linear change with latitude in
between) results in a good agreement of formula (A3) with
observations (Figure 10).
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Bias correction of an ocean-atmosphere coupled model, Geophys. Res.
Lett., 27, 2585–2588.

Cheney, R., L. Miller, R. Agreen, N. Doyle, and J. Lillibridge (1994),
TOPEX/Poseidon: The 2-cm Solution, J. Geophys. Res., 99, 24,555–
24,564.

Derber, J., and A. Rosati (1989), A global oceanic data assimilation system,
J. Phys. Oceanogr., 19, 1333–1347.

Ducet, N., P.-Y. Le Traon, and G. Reverdin (2000), Global high-resolution
mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2,
J. Geophys. Res., 105, 19,477–19,498.

Fukumori, I., R. Raghunath, L.-L. Fu, and Y. Chao (1999), Assimilation of
TOPEX/Poseidon altimeter data into a global ocean circulation model:
How good are the results?, J. Geophys. Res., 104, 25,647–25,665.

Giese, B. S., J. A. Carton, and L. J. Holl (1994), Sea level variability in the
eastern tropical pacific as observed by TOPEX and Tropical Ocean-
Global Atmosphere Tropical Atmosphere-Ocean Experiment, J. Geo-
phys. Res., 99, 24,739–24,748.

Gill, A. (1982), Atmosphere-Ocean Dynamics, Academic, San Diego, Calif.
Jet Propulsion Laboratory (JPL) (1998), NASA Scatterometer, Science Data
Product (NSCAT-2) User’s Manual: Overview and Geophysical Data
Products (D-12985), version 1.2, Pasadena, Calif.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull.
Am. Meteorol. Soc., 77, 437–471.

Kaplan, A., Y. Kushnir, M. Cane, and M. Blumenthal (1997), Reduced
space optimal analysis for historical data sets: 136 years of Atlantic sea
surface temperatures, J. Geophys. Res., 102, 27,835–27,860.

C02001 KAPLAN ET AL.: SMALL-SCALE VARIABILITY AND ERROR

16 of 17

C02001



Killworth, P. D., D. B. Chelton, and R. A. de Szoeke (1997), The speed of
observed and theoretical long extratropical planetary waves, J. Phys.
Oceanogr., 27, 146–166.

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979), Multivariate Analysis,
521 pp., Academic, San Diego, Calif.

Miller, R. N., A. J. Busalacchi, and E. C. Hackert (1995), Sea surface
topography fields of the tropical Pacific from data assimilation, J. Geo-
phys. Res., 100, 13,389–13,425.

Mitchum, G. (1994), Comparison of TOPEX sea surface heights and tide
gauge sea levels, J. Geophys. Res., 99, 24,541–24,553.

Oreskes, N., K. Shrader-Frechette, and K. Belitz (1994), Verification, vali-
dation, and confirmation of numerical models in the earth sciences,
Science, 263, 641–646.

Qiu, B. (1999), Seasonal eddy field modulation of the North Pacific Sub-
tropical Countercurrent: TOPEX/Poseidon observations and theory,
J. Phys. Oceanogr., 29, 2471–2486.

Reverdin, G., A. Kaplan, and M. Cane (1996), Sea level from temperature
profiles in the Tropical Pacific Ocean 1975–1992, J. Geophys. Res., 101,
18,105–18,119.

Schneider, E. K., D. G. DeWitt, A. Rosati, B. P. Kirtman, L. Ji, and J. J.
Tribbia (2003), Retrospective ENSO forecasts: Sensitivity to atmospheric
model and ocean resolution, Mon. Weather Rev., 131, 3038–3060.

Semtner, A. J., and R. M. Chervin (1992), Ocean general circulation from a
global eddy-resolving model, J. Geophys. Res., 97, 5493–5550.

Smith, T. M. (2000), Tropical Pacific sea level variatons (1948–98),
J. Clim., 13, 2757–2769.

Stammer, D. (1997), Global characteristics of ocean variability estimated
from regional TOPEX/Poseidon altimeter measurements, J. Phys. Ocean-
ogr., 27, 1743–1769.

Starr, V. P., and R. M. White (1954), Balance requirements of the general
circulation, Geophys. Res. Pap., 35, 57 pp.

Stricherz, J. N., D. M. Legler, and J. J. O’Brien (1997), TOGA pseudostress
atlas, 1985–1994: II, Tropical Pacific Ocean, COAPS Rep. 97-2, 177 pp.,
Cent. for Ocean-Atmos. Predict. Stud., Tallahassee.

Tokmakian, R. T., and P. G. Challenor (1999), On the joint estimation of
model and satellite sea surface height errors, Ocean Model., 1, 39–52.

Woodruff, S. D., H. F. Diaz, J. D. Elms, and S. J. Worley (1998), COADS
Release 2 data and metadata enhancements for improvements of marine
surface flux fields, Phys. Chem. Earth., 23, 517–526.

Zebiak, S. E., and M. A. Cane (1987), A model El Niño Southern Oscilla-
tion, Mon. Weather Rev., 115, 2262–2278.

�����������������������
M. A. Cane, D. Chen, and A. Kaplan, Lamont-Doherty Earth

Observatory, Columbia University, P. O. Box 1000, Palisades, NY 10964,
USA. (mcane@ldeo.columbia.edu; dchen@ldeo.columbia.edu; alexeyk@
ldeo.columbia.edu)
R. E. Cheney, NOAA/NESDIS Laboratory for Satellite Altimetry, Silver

Spring, MD 20910, USA. (Robert.Cheney@noaa.gov)
D. L. Witter, Department of Geology, Kent State University, Kent, OH

44242, USA. (dwitter@kent.edu)

C02001 KAPLAN ET AL.: SMALL-SCALE VARIABILITY AND ERROR

17 of 17

C02001


