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ABSTRACT

Near-global 48 3 48 gridded analysis of marine sea level pressure (SLP) from the Comprehensive Ocean–
Atmosphere Data Set for monthly averages from 1854 to 1992 was produced along with its estimated error
using a reduced space optimal interpolation method. A novel procedure of covariance adjustment brought the
results of the analysis to the consistency with the a priori assumptions on the signal covariance structure.
Comparisons with the National Centers for Environmental Prediction–National Center for Atmospheric Research
global atmosphere reanalysis, with the National Center for Atmospheric Research historical analysis of the
Northern Hemisphere SLP, and with the global historical analysis of the U.K. Meteorological Office show
encouraging skill of the present product and identifies noninclusion of the land data as its main limitation.
Marine SLP pressure proxies are produced for the land stations used in the definitions of the Southern Oscillation
and North Atlantic Oscillation (NAO) indices. Surprisingly, they prove to be competitive in quality with the
land station records. Global singular value decomposition analysis of the SLP fields versus sea surface temperature
identified three major patterns of their joint large-scale and long-term variability as ‘‘trend,’’ Pacific decadal
oscillation, and NAO.

1. Introduction

The monthly averaged sea level pressure (SLP) can
be viewed as a physical variable that together with sea
surface temperature (SST) describes the large-scale be-
havior of the ocean–atmosphere interface, the medium
of crucial dynamical importance for the climate and its
variability. For the presatellite era, the main source of
observations of this interface are the measurements tak-
en on volunteer observing ships. As a result, the ob-
servational coverage reflects ship traffic variations, be-
ing incomplete at present, quite sparse before 1950, and
virtually nonexistent before the middle of the nineteenth
century. Compilations of such observations into binned
averages on a regular latitude–longitude grid with qual-
ity control and other statistics have become available
during the last decade [e.g., Comprehensive Ocean–At-
mosphere Data Set (COADS), Woodruff et al. 1987;
Global Ocean Surface Temperature Atlas (GOSTA),
Bottomley et al. 1990]. We recently developed a method
for objective optimal analysis of such historical datasets
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(Kaplan et al. 1997), and applied it to the MOHSST5
version of GOSTA (Parker et al. 1994), producing near-
global analysis of monthly SST anomalies for the period
1856–1991 (Kaplan et al. 1998, hereafter K98). This
method combines a classic approach of least squares
optimal estimation with the novelty of space reduction
and is specifically designed to recover large-scale fea-
tures of the observed variable. These features are pre-
sumed to be of largest climatic importance, and they are
essentially all of the robust signal that can be derived
from sparse data. Here we apply a similar approach to
the COADS compilation of SLP observations.

The goal of this work is to produce an optimal anal-
ysis of SLP with estimated uncertainty, based solely on
marine observations. Such a product will be useful for
the baseline comparison of more elaborated analyses
(those making use of land station data, atmospheric
models, etc.) that might be produced in the future.

While we were attempting to apply to the COADS
SLP data exactly the same technique we used in K98,
the differences in the data produced a few alternations
in the procedure. To the large extent, these differences
are caused by the different nature of estimated variables.
SLP is known to have larger scales of spatial coherence
than SST has but a much whiter temporal spectrum
(Davis 1976). Consequently, the spatial interpolation of
SLP data with main patterns of SLP variability that can
be approximated by eigenvectors of the data sample
covariance matrix [also known as empirical orthogonal
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functions (EOFs)] has good prospects, but temporal
smoothing probably will not be useful. As a result, in-
stead of the reduced space optimal smoothing technique
of K98, we use reduced space optimal interpolation
here.

In section 2 we provide a short description of the
procedure, concentrating on the differences between the
present application and K98. The rest of the paper deals
with the verification of the product we developed. In
section 3 it is compared with the National Centers for
Environmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) global atmosphere re-
analysis (Kalnay et al. 1996), with a historical analysis
of the Northern Hemisphere SLP (Trenberth and Paolino
1980), and with the analysis GMSLP2.1f of the U.K.
Meteorological Office (Basnett and Parker 1997). In sec-
tion 4 we use the analysis to estimate the SLP values
at locations of a few land stations—Darwin, Tahiti,
Reykjavik, and Gibraltar—in order to verify the results
and theoretical error estimates against independent data.
We also produce and validate the analysis versions of
the Souther Oscillation and North Atlantic Oscillation
indices. Section 5 presents verification of more subtle
features of the analysis, its representation of the long-
term variability of SLP and SST, while section 6 dis-
cusses results and makes conclusions.

2. Data and their analysis

a. Observational data for the analysis

The SLP data consist of monthly summary trimmed
groups (MSTGs) from release 1 of COADS (years
1854–1979; Woodruff et al. 1987) extended by standard
release 1a (years 1980–92; Woodruff et al. 1993).
MSTG data do not contain individual measurements but
instead provide monthly summary statistics of the sets
of measurements in 28 3 28 boxes arranged in a regular
spatial grid. In addition to COADS regular quality con-
trol procedures, the data for MSTG statistics are sub-
jected to the additional ‘‘trimming’’ procedure, which
identifies and excludes outliers with respect to clima-
tological 3.5s limits derived from data for periods
1854–1909, 1910–49, and 1950–79, the latter period
limits being used also for standard release 1a. Our anal-
ysis procedure uses two statistical characteristics of the
measurements inside 28 3 28 monthly boxes: mean SLP
(p) and the number of observations (nobs). We also use
the standard deviations (s) for the recent (1980–92)
period in order to estimate the SLP intrabox variability,
which we use for estimating sampling error in the box
mean values.

The present version of COADS provides particularly
poor SLP data coverage prior to World War II, as com-
pared to, for example, SST data coverage for the same
period. According to Woodruff et al. (1998), in ‘‘Dutch’’
deck, a major component of COADS data for the period
1854–1938, SLP data is not translated from millimeters

to millibars (this requires a correction for gravity) and
thus is omitted from the MSTG data.

b. Estimating the annual cycle and monthly
anomalies

The analysis is of the monthly anomalies, that is,
deviations from the climatological annual cycle. We
computed the anomalies with respect to the climatolog-
ical annual cycle estimated from data collected during
the period 1951–80 [the period used by Parker et al.
(1994) in estimating anomalies for their MOHSST5
product, which was analyzed by K98]. While averaging
monthly values of 28 3 28 boxes for each calendar
month over the 30 yr, we weight each monthly value
by the number of individual observations available for
that box in that month. Such weights minimize the im-
pact of random instrumental and sampling error on re-
sulting averages. After averaging and obtaining a 12-
month climatology, we apply a binomial 1–2–1 filter
periodically in time, and a fourth-order Shapiro filter
(Shapiro 1971) in space. As a result of these steps, we
obtain a spatially and temporally smooth climatology
that is then subtracted from the COADS values accord-
ing to the calendar month, in order to obtain 28 3 28
anomalies.

c. Covariance estimation

As emphasized in K98, reliable estimation of the
space covariance matrix is the most crucial element of
our method. To obtain faithful field reconstructions, we
have to use a relatively long time period for the co-
variance estimation, and there should be enough data
in it for estimating all necessary cross covariances. With
this in mind, we attempt to estimate covariance for the
period 1951–92, which starts with a steep postwar in-
crease in data coverage. As in K98, we define the do-
main of the analysis by the requirement that the obser-
vations are available for more than half of the time
points for every spatial box included. The initial attempt
to apply this approach to the original COADS 28 3 28
bins produces a very impractical domain: large gaps in
the equatorial Pacific are left uncovered, as well as
smaller areas in the Indian Ocean and the South Atlantic.
Starting in the 1960s instead of the 1950s does not make
much difference. In order to improve the spatial cov-
erage of the estimated covariance (and, subsequently,
the analyzed data), we have to decrease resolution by
uniting COADS 28 3 28 boxes into larger bins. This
procedure is justified by the fact that the SLP anomalies
usually have larger spatial scales than the climatology.
While the switch to 28 latitude 3 48 longitude bins still
leave many ‘‘holes,’’ averaging data into 48 3 48 boxes
basically solves the problem. This example demon-
strates the restriction that existing marine observational
coverage imposes on the spatial resolution of the co-
variance estimate based on (at least) a few decades, and
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thus it sets the limit on the possible resolution of the
historical climate analyses based solely on the observed
covariance, without any additional special assumptions
of its small-scale behavior.

After averaging 28 3 28 box means into those of 48
3 48 boxes (weighting every value by the number of
observations that was used to obtain it), we estimate a
space 3 space sample covariance matrix and subject it
to the procedures of K98 intended to suppress the in-
fluence of observational and sampling error: we apply
a fourth-order Shapiro filter to rows and columns of the
sample covariance matrix, then test the variance de-
crease against our estimate of data error [diagonal of
matrix R in Eq. (4) below]. If the decrease is larger than
the error estimate, we inflate the variance accordingly
while preserving correlation structures of the filtered
covariance. Unlike K98, in the present application the
heuristic procedure of redistributing the variance among
eigenvalues [see Eq. (19) in Kaplan et al. (1997)] did
not give proper consistency with the distribution of en-
ergy over EOF modes in the analyzed solution. Because
of that we had to develop a more complicated procedure,
which is described in the appendix. This new procedure
allows us to achieve consistency between the expected
and actual covariances of the analyzed solution and to
add reliability to its theoretical error estimates.

d. Space reduction

We present the resulting covariance matrix C in its
canonical form:

C 5 ELET 1 E9L9E9T. (1)

Here L is the diagonal matrix that contains the L
largest eigenvalues (the reduced phase space); the re-
mainder of the spectrum, L9, corresponds to the modes
dominated by noise and error. Further, E and E9 are
matrices whose columns are eigenvectors (EOFs) cor-
responding to the eigenvalues contained in L and L9,
respectively. The leading L eigenvectors define the re-
duced space of the main modes of large-scale variability
in which we will be looking for an analyzed solution.
The discarded part of the total space is too contaminated
by noise to yield any structured information. For each
month we approximate the SLP field T by its projection
on the L-dimensional space of leading eigenvectors,

T 5 Ea, (2)

and looking for the optimal estimate of the L-dimen-
sional vector of coefficients a.

In K98 we compared with partially independent data
the analyses of SST with widely varying L and chose
L 5 80 to be the best. At the same time we noticed that
the results of the analysis are affected only slightly by
changes in L within 50%. Similar to SST resolution at
the worse coverage and higher random error of SLP
data suggest not to use more than 80 EOFs for the SLP

analysis. Because of that we run the analysis with L 5
80 retaining almost 70% of the total variance.

e. Cost function

For each time point (month) in the record the reduced
space optimal interpolation (OI) solution for a mini-
mizes the cost function

S[a] 5 (HEa 2 To)T (HEa 2 To) 1 aTL21a, (3)21R

where To is a vector of available SLP observations, H
is a transfer operator from the full grid representation
of the SLP field T to the available observations

To 5 HT 1 «o,

and R 5 ^«o«oT& is the covariance of sum of observa-
tional error (which includes both instrumental and sam-
pling types of error) and representational error [which
is an error of approximation (2)]. Since observations
are averaged into 48 3 48 boxes, both T and To are on
the same grid so that H is just a ‘‘sampling’’ operator
(a submatrix of the identity matrix that includes only
rows corresponding to available observations).

The error covariance

R 5 R 1 HE9L9E9THT (4)

consists of two terms. The usual data error covariance,
R, accounts for the instrumental and sampling error in
48 3 48 box monthly means. It is represented by a di-
agonal matrix with the elements ^ &/Nobs on diagonal,2s 434

where Nobs is number of observations contributing to the
48 3 48 box statistics, and ^ & is intrabox measure-2s 434

ment variability estimated through averaging over a re-
cent well-sampled period (1983–92). The idea behind
this estimate is that the error in the monthly averaged
box value is related to the high-frequency, submonthly
variability (due to sampling variability and observa-
tional errors) typical to that box (Leith 1973; Trenberth
et al. 1992). The 48 3 48 intrabox variances are esti-
mated from the individual statistics for 28 3 28 subboxes
included in COADS (mean p, standard deviation s, and
number of observations nobs) using

22 2n (s 1 p ) n pobs i i i obs i i2s 5 2 ,O O434 1 2N Ni51,...,4 i51,...,4obs obs

N 5 n .Oobs obs i
i51,...,4

The square root of average values of ^ &/Nobs for the2s 434

period 1951–92 is shown in Fig. 1a. The second term
in R accounts for the covariance created in the truncated
modes E9, the covariance not resolved by the analysis
(Fig. 1b).

f. Analyzed solution

Because of the first term in the formulation of the
cost function (3), the minimization of S will constrain
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FIG. 1. The rms error estimates in millibars: (a) observational error
of 48 3 48 box means for 1951–92, (b) error due to the truncation:
the variance in the EOFs beyond L 5 80, and (c) large-scale estimated
error: 1951–92.

the solution to be close to the observed data (within the
uncertainty defined by observational error). The second
term confines the distribution of energy over the modes
of variability to that found in the data (i.e., a derived
temporal coefficient of a given eigenvector cannot have
more variance than the corresponding eigenvalue). In
contrast with the SST analysis presented in K98, the
small month-to-month persistence in the SLP field even
for the leading modes of variability did not allow us to
incorporate a model of time transitions into the analysis
and implement the optimal smoother. Here we have to
stop at the level of optimal interpolation.

Minimizing S gives the OI solution

5 ,T T 21 oâ PE H R T

where

P 5 ( 1 L21)21T T 21E H R HE

is a theoretical estimate for error covariance in the so-
lution.

This reduced space OI solution can be converted into
its full grid representation by

T̂ 5 E ; P 5 EP ET.â

It should be kept in mind that despite being presented
in the full grid space, P only accounts for the large-
scale error (its rms for 1951–92 is shown in Fig. 1c).
Here T does not have any variability corresponding to
the modes with numbers higher than L. These modes
contribute to an additional error against unfiltered reality
with covariance

Pr 5 E9L9E9T

(cf. the second term in the formula for R above). The
standard deviation of this error is shown in Fig. 1b.

3. Analysis verification

Here we present the systematic comparison of our OI
analysis of COADS SLP with four other products: raw
COADS data (averaged into 48 boxes, as described
above), SLP from the Climate Data Assimilation System
(CDAS) reanalysis project run jointly by NCEP and
NCAR (Kalnay et al. 1996), Trenberth and Paolino
(1980) Northern Hemisphere SLP analysis (hereafter
NCAR NH analysis), and the recent GMSLP2.1f anal-
ysis produced in the Hadley Centre of the U.K. Met.
Office by Basnett and Parker (1997) (hereafter the
UKMO analysis), which supercedes its earlier version
presented by Allan et al. (1996). The CDAS reanalysis
is the output of a state-of-the-art atmospheric numerical
weather prediction model (albeit with reduced resolu-
tion) with a sophisticated three-dimensional spectral
variational scheme of data assimilation through which
a great deal of observed data (global rawisonde data,
surface marine data, aircraft data, surface land synoptic
data, satellite sounder data, Special Sensor Microwave/
Imager surface wind speeds, satellite cloud drift winds,
etc.) is being reconciled with the model dynamics. We
take the CDAS reanalysis SLP output to be the reference
standard against which all other products are verified.

The NCAR NH analysis, available on monthly 58 3
58 grids starting in 1899, is a compilation of historical
weather charts for different regions. U.S. Navy opera-
tional analyses are used from July 1962. An elaborate
procedure was used to identify, and where possible cor-
rect, suspicious data. The UKMO analysis is based on
median blending of a few previously existing gridded
analyses of historical SLP (NCAR NH included) with
marine and land observations, and involves a sophis-
ticated sequence of corrections and smoothing. There-
fore, it should come as no surprise that there is a certain
degree of similarity between all three of these analyses
(CDAS, NCAR NH, and UKMO). All three analyses
use the land station data and benefit from the general
principles of operational meteorological analysis, albeit
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FIG. 2. The rms differences (mb) for 1958–92 between CDAS reanalysis SLP and (a) OI, (b) COADS, (c)
NCAR NH, and (d) UKMO SLP products.

implemented differently in different products. In con-
trast, our product uses nothing but raw COADS marine
observations and the generic principles of reduced space
optimal estimation.

The comparison is done for three intervals of time:
the most recent one, 1958–92, for which all products
are available; the intermediate period 1899–57, for
which there are no NCEP–NCAR model reanalysis but
all historical SLP products are available; and the early
period 1871–98, for which only UKMO, COADS, and
our analysis are available. We also look into equatorial
Pacific SLP values for the latter three products at the
full length of their common coverage (1871–1992). Be-
fore doing comparisons, fields from all products were
regridded on the common 58 3 58 grid, and their cli-
matological means for periods of comparison were re-
moved.

a. 1958–92

Spatial patterns of standard deviation of anomalies
for all products (not shown) have a great deal of sim-
ilarity. However, raw COADS has a significant amount
of excessive variance compared to CDAS, about (2 mb)2

on average, which should be interpreted as the variance
of the observational and sampling error. The NCAR NH
product also shows greater variance, while our OI and
the UKMO products are close to CDAS. Both the NCAR
NH and UKMO products are clearly superior to ours
near coastlines (former analyses use land observations
while we do not) and at the southern boundary of our
analysis domain. In the ‘‘open ocean,’’ however, the OI

results seem to be somewhat smoother and more similar
to CDAS.

The same tendencies stand out also when the products
are compared to CDAS in terms of rms differences (Fig.
2) and correlation coefficients (not shown). The large
increase in rms differences with CDAS near continent
coastlines and the southern edge of the analysis domain
discerned in the raw COADS data is only slightly de-
creased in the OI analysis, while in both the UKMO
analysis and the NCAR NH the use of land observations
and operational weather analyses reduce differences
with the CDAS in these places.

Comparison of Figs. 2a and 1b shows that our esti-
mate of the truncation error exceeds almost everywhere
the OI difference from CDAS. While the latter is ex-
pected to be smaller than the total error in the OI analysis
(because both products use essentially the same dataset
of historical marine SLP observations and because
CDAS is probably providing a somewhat smoother ver-
sion of the reality), the magnitude of the discrepancy
suggests that our covariance adjustment procedure (see
appendix) overestimated the variance in the tail of the
spectrum.

b. 1899–1957

In the Tropics the OI is closer to the UKMO product
than to the raw COADS (Fig. 3). In the North Atlantic
the UKMO and the NCAR NH analyses are remarkably
close (recall that the NCAR NH was used in the UKMO
analysis as one of the input sources) and our OI is closer
to both of them than to the raw COADS. In the North
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FIG. 3. The rms differences (mb) for 1899–1957 between (a) OI and COADS, (b) OI and NCAR NH, (c) OI and
UKMO, and (d) UKMO and NCAR NH.

Pacific, however, the UKMO and NCAR NH have larger
differences, and the OI is closer to the UKMO than to
the NCAR NH analysis.

For this as well as for the later period the correlation
between different products has flat patterns (not shown)
of high values in the most of North Pacific and North
Atlantic, which decrease steeply toward continental
coastlines. Because of that, the rms patterns of Figs. 2
and 3 in these areas resemble scaled-down patterns of
standard deviation of SLP anomaly.

c. 1871–98

For this early period of erratic COADS data our OI
analysis differs by less than 1 mb rms from the UKMO
product in the Tropics and is closer to the UKMO anal-
ysis than to the raw COADS everywhere (Fig. 4). In
fact, everywhere except for the North Atlantic and the
vicinity of the New Zealand, the OI–UKMO difference
is smaller for this period than for the period 1899–1957
(cf. Figs. 4b and 3c), because under the condition of
extreme data sparsity both analyses exhibit substantially
less variance during the former period than during the
latter. The UKMO product shows particularly dramatic
reduction in the variance of the analyzed anomalies:
aside from the North Atlantic and New Zealand, the
standard deviation of their marine SLP anomalies rarely
exceeds 1 mb, the anomalies being equal to zero for
decades in some areas of North Pacific and Southern
Hemisphere. Because of this and being based exclu-
sively on the COADS data, the OI is also slightly closer
to them than the UKMO product is.

It should be kept in mind that the reliability of the
analyzed SLP fields is very low for this period. The
variance of the large-scale error alone is comparable to
the variance of reconstructed fields themselves in tropics
and North Atlantic and exceeds it in the North Pacific
and Southern Ocean.

d. Equatorial Pacific

Figure 5 shows aspects of raw COADS data, the
UKMO product, our OI, and SST analysis of K98 in
the annual mean anomalies for the equatorial Pacific.
The OI and UKMO analyses are particularly close to
each other for the period 1960–80 and reasonably close
for the entire postwar period. For the most of the record
the OI analysis produces an expected picture of zonally
coherent equatorial variability that mirrors variability in
the SST values. In contrast, before 1930 when the
COADS data in the area are scarce, the UKMO analysis
exhibits a few patches of positive and negative anom-
alies seemingly dictated by the available island station
data. In this case the blending and smoothing technique
employed for the UKMO analysis could not effectively
smooth out mean discrepancies between different sta-
tions resulting in this patchy structure. The obvious
shortcoming of our product is the reduction in the var-
iance of the equatorial Pacific during the periods when
COADS data are sparse (1910–20 and pre-1870).

4. Sea level pressure indices
Here we use the OI analysis of marine SLP data in

order to estimate SLP variations at locations of four
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FIG. 4. The rms differences (mb) for 1871–99 between (a) OI and
COADS, (b) OI and UKMO, and (c) UKMO and COADS.

land stations where particularly long barometric records
are available (Table 1). The SLP records of these stations
define widely used climatic indices of North Atlantic
Oscillation (NAO) (Jones et al. 1997) and Southern Os-
cillation index (SOI) (Ropelewski and Jones 1987). We
produce marine-based proxies for a land station SLP by
averaging the OI analysis values over a few highly cor-
related 48 3 48 grid boxes surrounding the station, as
indicated in Table 1. Such definitions of proxies allow
one to use the formalism of Kaplan et al. (1997) to get
optimal estimates of the proxies with error bars on them.
Large (by far exceeding error bars) differences between
station data and proxies can occur in one of a few cases:
when land station barometric measurements are in se-
rious error, when surrounding ship data are subject to
systematic error, and when SLP on a land station has a

large contribution of essentially local effects that cannot
be captured by averaging marine SLP over the area of
a few grid boxes. Since the land station record consists
of monthly averages of many measurements taken at
the same location by the same instrument, one expects
it to be of superior quality compared to averages of ship
measurements over individual grid boxes. Surprisingly,
however, the proxies based on the latter prove to be
comparable in quality with land station data, except for
the periods when marine data coverage is particularly
bad.

Table 2 compares monthly time series of Darwin and
Tahiti SLP observations with their marine-based prox-
ies. In the recent (1951–92) period of relatively reliable
data, both land station records are equally highly cor-
related with the proxies and show rms deviations from
them that are well below theoretical error estimates.
Imperfections in the correspondence between stations
and proxy values in this period come mostly from high
(and incoherent between the two types of records)
month-to-month SLP variability. When the latter is fil-
tered by a 5-month running mean filter, the match im-
proves considerably (Figs. 6 and 7). For the earlier pe-
riods the correspondence between the station data and
proxies worsens, more so for Tahiti (where the deviation
exceeds expected error) than for Darwin records. Im-
provement of proxies on straight averages of local raw
marine data is remarkable (Fig. 6). In fact, the truthful
reconstructions are not even limited by the availability
of the local data, using large-scale correlations with re-
mote data in order to estimate the SLP in the vicinity
of the station.

Since Darwin and Tahiti stations are known to capture
the variability of the Southern Oscillation, we expect
significant anticorrelation of the SLP records at these
stations, as well as significant absolute values of the
correlation with Niño-3 (mean SST for the eastern equa-
torial Pacific 58S–58N, 1508–908W; we use optimal es-
timates of this index from K98). We expect the absolute
values of the correlation coefficients to be high for the
recent time periods and reduced for the earlier periods
of lower quality data. Indeed, as we move from the
present to the past the absolute values of the correlation
coefficients of station records with Niño-3 decreases:
only slightly for Darwin and more appreciably for Ta-
hiti. Note that the marine-based proxy for Tahiti SLP
is more robust in terms of its Niño-3 correlation than
the station record. Similarly, the two proxies are more
strongly anticorrelated with each other than the two sta-
tion records.

In the spirit of Trenberth (1984), higher correlations
between reconstructed indices compared to the land-
based ones are interpreted as higher signal-to-noise ratio
(in this case ‘‘signal’’ is large-scale ENSO-associated
phenomena, ‘‘noise’’ is everything else). This improve-
ment might take place for two reasons. First, a marine-
based proxy might be free from systematic errors in the
land station data, which, when they occur, are very dif-
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FIG. 5. Equatorial anomalies of (a) COADS SLP (mb), (b) UKMO (mb), (c) OI (mb), and (d) K98 SST anomaly (8C) multiplied by 21.
Contour interval for SLP (SST) is 0.5 mb (0.68C); values higher than 0.25 mb (0.38C) are shaded dark, lower than 20.25 mb (20.38C)
are shaded light. Missing data in (a) are dotted.

TABLE 1. Land stations and their marine proxies.

Station
Source of the

land data
Time period
in the source

Marine SLP proxy defined as
the OI analysis average over the area

Darwin
Tahiti
Gibraltar
Reykjavik

Können et al. (1998)
Können et al. (1998)
Jones et al. (1997)
Jones et al. (1997)

1866–1997
1855–1997
1821–1997
1821–1997

148–108S, 1288–1328E
228–148S, 1568–1448W
348–388N, 88W–48E
628–668N, 288–208W

ficult to correct. For example, there are known to be
problems with the Tahiti barometer before 1935 (Ro-
pelewski and Jones 1987; Trenberth and Hoar 1996).
Certain biases have been corrected by Ropelewski and
Jones (1987) (see their Table 2). Still, the station record
shows an almost constant positive anomaly from 1928
to 1932 that does not have a counterpart in either Darwin

record, Niño-3 reconstruction, or marine data abundant
in the vicinity of Tahiti at that time, leading to the con-
clusion that Tahiti station data are in error during the
period. Also suspicious are the largest in this century
positive anomaly in 1917 (incidentally, a year when the
barometer was changed; a bias correction of 2 mb was
applied to the entire period 1917–25) and uncorrelated
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TABLE 2. Comparison of land station data with marine-based proxies at Darwin and Tahiti.

Statistics

1855–1900

Darwin Tahiti

1901–50

Darwin Tahiti

1951–92

Darwin Tahiti

Correlation between station and proxy
Rms diff between station and proxy (mb)
Rms proxy theoretical error (mb)
Correlation between proxy and Niño-3
Correlation between station and Niño-3

0.45
1.1
1.3
0.48
0.51

0.26
1.3
1.1

20.41
20.27

0.60
0.84
1.3
0.44
0.56

0.31
1.16
0.98

20.53
20.26

0.83
0.60
1.2
0.61
0.61

0.83
0.56
0.89

20.55
20.47

Correlation between proxies
Correlation between stations

20.55
20.17

20.36
20.25

20.49
20.35

FIG. 7. Five-month running mean SLP anomaly (mb) at Tahiti: land
station records compiled by Können et al. (1998) (dashed line) and
Ropelewski and Jones (1987) (dots), and OI proxy (solid line). Niño-3
(8C) multiplied by 21 is shown by a thick light line.

FIG. 6. Five-month running mean SLP anomaly (mb) at Darwin:
land station record (dashed line), OI proxy (solid line), and raw
COADS proxylike average (dots). Niño-3 (8C) is shown by a thick
light line.

with other sources variability between 1902 and 1904.
Recently recovered early Tahiti data along with regres-
sion of the data from other stations were used by Können
et al. (1998) to extend the Tahitian record back to 1855
and fill the gaps in it. Figure 7 shows that on both of
the most prominent occasions of disagreement between
Können et al. (1998) and Ropelewski and Jones (1987)
Tahiti records (1905 and 1926), the former is closer to
Niño-3 and our OI estimate.

Another reason for the increase in signal-to-noise ra-

tio in the proxy indices is that our technique reconstructs
large-scale patterns of variability, and in the periods of
poor data coverage it reflects the large-scale Southern
Oscillation variability rather than local variability. This
explains the fact that the strongest anticorrelation be-
tween proxies (20.55) is achieved in the earliest period,
when the data coverage is particularly poor.

The obvious problem with the marine-based proxies
is when data availability over the entire global ocean is
poor, the optimal estimate will tend to produce no var-
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FIG. 8. Five-month running mean SLP anomaly (mb) at Gibraltar:
land station record (dashed line), OI proxy (solid line), and raw
COADS proxylike average (dots).

FIG. 9. Five-month running mean SLP anomaly (mb) at Reykjavik:
land station record (dashed line), OI proxy (solid line), and raw
COADS proxylike average (dots).

TABLE 3. Comparison of land station data with marine-based proxies at Gibraltar and Reykjavik.

Statistics

1855–1900

Gibr Reyk

1901–50

Gibr Reyk

1951–92

Gibr Reyk

Correlation between station and proxy
Rms diff between station and proxy (mb)
Rms proxy theoretical error (mb)

0.52
2.3
2.0

0.48
6.3
5.2

0.81
1.4
1.4

0.79
4.2
3.0

0.92
0.98
1.2

0.97
1.7
2.1

Correlation between proxies
Correlation between stations

20.57
20.48

20.48
20.49

20.49
20.47

iability, as is the case with the Darwin and Tahiti re-
constructions before 1875 (Figs. 6 and 7). This seems
to be less the case for Gibraltar and Reykjavik SLP
marine-based proxies, which take advantage of good
North Atlantic data coverage (Figs. 8 and 9). Otherwise
the tendencies in the Atlantic proxy correlations are con-
sistent with what was observed for tropical stations
(Figs. 8 and 9, and Table 3).

Figure 10 compares SOI and NAO indices based on
the proxies (seasonal and winter values respectively)
with those based on land station data. The match seems
almost perfect in the recent decades and degraded during
earlier times. This suggests that mismatches are mainly

due to the decreased data quality rather than to the dif-
ference in the definition of marine-based and land-based
indices. We show monthly values of Niño-3 on SOI
panel as well. Two of the most prominent occasions
when land-based SOI differs from the two other curves
(around 1917 and 1930) are traceable to problems in
the Tahiti station record.

5. Global climate variability in the SLP analysis

Using the SLP analysis described above, and the SST
analysis of K98, we seek to identify the leading patterns
of global climate variability during the last century or
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FIG. 10. Comparison of land-based (dashed lines) and marine-based (solid lines) oscillation
indices. Seasonal means for SOI and winter means for NAO are shown. SOI panel shows also
Niño-3 multiplied by 21 in a thick light line.

so. We apply a running 5-yr means filter to annual av-
erages of the 80 time coefficients corresponding to SLP
and SST, respectively (the direct results of the reduced-
space analysis procedure), and calculate the covariance
matrix between the two fields. We then perform a sin-
gular value decomposition (SVD) analysis of this 80 3
80 covariance matrix to determine the linear combi-
nations of each set of coefficients (SLP and SST) that
would lead to time series that maximize the covariance
between the two fields. We then regress the full data on
these time series to uncover the spatial patterns of each
field corresponding to these modes. The procedure is
equivalent to that described by Bretherton et al. (1992)
and can be thought of as the latter’s reduced space ver-
sion. The leading three heterogeneous patterns (the re-
gression of each field on the normalized time series of
the other) are shown in Fig. 11, and the time series are
in Fig. 12.

The dominant pattern of SLP–SST covariability ex-
plains 29% of the covariance, and the correlation be-
tween the two corresponding time series is 0.73. To-
gether, the SST time series and pattern (Fig. 12, top
panel, and Fig. 11, top left panel) describe a century-
long warming of the world ocean. The SST time series
is quite similar to that of globally averaged SST (e.g.,
Nicholls et al. 1996; their Fig. 3.3). The warming is not
uniform in either space or time. During the last 90 years
or so, there are two intervals of conspicuous warming,
one between 1920 and 1950, and the other after 1975
or so.

The pattern is quite similar to the one described in
Cane et al. (1997). It indicates that most ocean areas
contribute positively to the warming trend, with the
strongest warming occurring in the Southern Hemi-
sphere. However, some oceanic regions display a non-
committal cooling trend. These regions are found in the
tropical Pacific, North Pacific, and North Atlantic
Oceans. Cane et al. (1997) interpret this patterns, in
particular the equatorial Pacific cooling, as the response
of the regional equatorial atmosphere–ocean system to
global warming induced by the increase in CO2. How-
ever, the robustness of the equatorial signature has been
questioned by others (e.g., Hurrell and Trenberth 1999).
The regions where the SST changes are most significant
(as judged by the heterogeneous correlation patterns,
not shown) are in the South Atlantic and Indian Oceans,
and in the western tropical and South Pacific Ocean,
west of the date line. Overall the pattern explains 11%
of the analysis area SST variance.

The corresponding leading SLP time series (Fig. 12,
top panel) indicates a negative trend in the last few
decades of the nineteenth century and positive trend in
the twentieth century. The trend is disrupted by a sharp
fluctuation during the World War I years, which may
be spurious. The spatial pattern of the trend (Fig. 11,
top right) indicates that the east–west pressure contrast
over the Pacific Ocean has been decreasing since the
turn of the century. There does not seem to be a con-
sistent local relationship between the trend in SLP and
that in SST. In some regions SLP is decreasing in time
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FIG. 11. Heterogenous regression patterns corresponding to the three leading SVD modes of SST and
SLP covariance. SST patterns are in units of degrees Celsius per one standard deviation of SLP time
series from Fig. 12; SLP patterns are in units of millibars per one standard deviation of SST time series
from Fig. 12.

when SST is increasing, and in others the situation is
reversed. Moreover, the pattern explains only 6% of the
analysis area SLP variance and the heterogeneous cor-
relation pattern (not shown) rarely displays values high-
er than 0.3, except over the southern edge of the analysis
domain. Clearly further independent SLP data are need-
ed to verify the authenticity of this pattern.

The second pattern of joint SLP and SST variability
during the last century and a half is shown in the middle
set of panels in Fig. 11. The corresponding time series
are in the middle panel of Fig. 12. From its spatial
structure and temporal characteristics the pattern can be
easily recognized as that of the Pacific decadal oscil-
lation (Zhang et al. 1997; Mantua et al. 1997). It rep-
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FIG. 12. Time series corresponding to the three leading SVD
modes for SST (8C) (solid lines) and SLP (mb) (dashed lines).

resents the low-frequency manifestation of ENSO. The
pattern entails an ‘‘ENSO-like’’ relationship between
tropical and midlatitude Pacific SST, and between SST
and SLP in the entire Pacific basin. South Atlantic and
Indian Oceans SST vary in phase with those in the
tropical Pacific and along the western North American
seaboard. SLP in the Atlantic and the Indian Oceans
varies in opposite polarity to that over the northern and
eastern tropical Pacific, consistent with the signature of
the Southern Oscillation. The time series of the SLP
and SST patterns are correlated at a level of 0.91 and
explain 20% of the total covariance between the two
fields, and 15% and 18% of the analysis domain SST
and SLP variance, respectively. The SST time series is
significantly correlated (0.77) with the Niño-3 index,
and the corresponding SLP series highly correlates
(0.88) with the Trenberth and Hurrell (1994) North Pa-
cific index.

The third pattern (bottom panels of Figs. 11 and 12)
shows little SLP variability outside the North Atlantic
basin. The latter consists of an out-of-phase fluctuation
between the subpolar and subtropical Atlantic, resem-
bling the NAO ‘‘dipole’’ (Hurrell 1995). The corre-
sponding SST pattern is more global in extent, covering

regions in both Atlantic and Pacific Ocean basins. In
the Atlantic, SST north and south of the equator vary
out of phase with each other in a manner akin to that
displayed by the third SST eigenvector of Folland et al.
(1986) (see also Parker and Folland 1991). There is.also
some resemblance between the North Atlantic SST pat-
tern and the interdecadal pattern of Atlantic SST vari-
ability described in Kushnir (1994; see also Kushnir and
Held 1996). Note that the relationship between SST and
SLP variability in the North Atlantic is somewhat dif-
ferent from that associated with interannual variability
(Kushnir 1994; Kushnir and Held 1996). The temporal
behavior of the SLP pattern is consistent with the low-
frequency evolution of the NAO index shown in Hurrell
(1995) and has a correlation of 0.78 with the latter. The
relationship between Pacific SST and variability in the
Atlantic basin is to some extent consistent with the Fol-
land et al. (1986) analysis, but in addition reveals a link
between the topical Pacific and decadal changes in the
NAO. However, these features maybe spurious as the
SST heterogeneous correlation pattern does not display
large areas with correlation above 0.3, except in the
North Atlantic and south Indian Ocean regions. As a
result this climate variability pattern explains only 6%
of the SST variance. The respective number for the SLP
field is 9%. Overall this pattern explains 9% of the joint
variability of the two fields and the time series correlate
at a level of 0.81.

6. Discussion and summary

This first attempt at applying the reduced space OI
analysis technique to marine SLP data shows some suc-
cess. The open ocean SLP fields verify against the
CDAS and UKMO analyses, products based on richer
data sources; historical reconstructions of SLP indices
are validated by land observations; the analysis error
bars give reliable error estimates; large-scale long-term
modes of variability are reasonable. However, aliasing
of short-term SLP variability near land and on the south-
ern edge of the analysis domain causes steep error in-
crease in these areas. Comparison with other products
that benefit from the land station data and principles of
meteorological analysis suggests that those problems
can be helped by bringing land data into the analysis.
This will be our next step, to be carried out as soon as
a coherent compilation of land station SLP records cur-
rently under development in the UKMO becomes avail-
able for our use. Incorporating land into such an analysis
will make it almost global and will be beneficial in its
own right. We also plan to test the use of the SLP fields
of the CDAS reanalysis for the estimation of the reduced
space patterns and energy distribution. However, the
latter procedure will result in a dependence of the anal-
ysis on the CDAS assimilating model, a possible draw-
back in some regions. The difference between CDAS
and COADS implied covariance structures, and the in-
fluence of the switching from one covariance estimate
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to another on the results of optimal analysis, will have
to be investigated. More elaborated versions of the anal-
ysis may involve seasonal variations of assumed co-
variance structure and make use of SST data via SST–
SLP statistical connections.

The procedure of reestimating the signal covariance
developed in this work achieves the consistency be-
tween the energy distribution in the solution with the a
priori estimate of the reduced space signal covariance.
However, it apparently overestimates the covariance in
the truncated part of the spectrum. Inadequacy of the
observational data sampling and the crudeness of our
observational error model are the most probable culprits.
While the possibilities of improving the former are lim-
ited, the latter can perhaps be refined in the future. The
influence of this procedural caveat on the present prod-
uct is not particularly detrimental: if anything, it results
in the larger (more conservative) theoretical error es-
timates for the solution.

Among many things that could go wrong with this
SLP analysis is the possible aliasing of diurnal and semi-
diurnal tides for the periods such as the beginning of
the century (Barnett 1984) when the COADS data were
sampled fewer than four times per day (Trenberth 1977).
Effect of atmospheric tides can exceed 1 mb in the
Tropics, but we see no evidence of the problem in our
reconstruction of tropical indices. A possible explana-
tion is that the tidal influence has a global structure of
wavenumber 2 in the atmosphere (Trenberth 1991),
which is not assigned much energy by our reduced space
covariance structure, as the latter was estimated for the
modern period of approximately four times per day data
sampling. Also predominant data sampling in midlati-
tudes, where tidal influence is weaker, probably helps
to filter out tropical aliasing.

A surprising finding of this work is that reconstruction
of SLP indices based exclusively on ship observations
can be competitive in quality with those based on land
station records. However, all presently available datasets
of marine observations start in the 1850s and have very
poor data coverage over the first two decades, which
limits the length of useful reconstructions for marine-
based indices.
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APPENDIX

Reestimation of the Signal Covariance

Kaplan et al. (1997) (hereafter K97) in their appendix
B obtained equations

def
pp p TA 5 ^a a & 5 L 1 P , (A1)p

def
pOI OI T 21A 5 ^a a & 5 L(L 1 P ) L, (A2)OI

which tie together covariances of the projection and
reduced space OI solutions (ap and aOI, respectively),
error covariance for the projection solution P p, and the
covariance of the retained portion of the signal space,
L, presented for the basis defined by E [cf. Eq. (1)].
The projection solution ap consists of the best-fit co-
efficients for the predetermined set of patterns (the col-
umns of E) to the observed data. Covariance P p is the
theoretical estimate of the error in these coefficients.

The covariance L is the principal assumption in our
computational procedure: it determines the distribution
of energy over the basis of the reduced space. If the
underlying assumptions of the method hold, the values
of analyses covariances Ap and AOI obtained from the
solution should be approximately equal to the theoretical
values given by the respective right-hand sides of the
equations (A1) and (A2). In particular, the covariance
of the projection solution should exceed the assumed
covariance of the ‘‘true’’ signal, while the latter should
exceed the covariance of the OI. In K97 we tested this
consistency by plotting the ratios of the diagonals of
the analyses’ covariances to the diagonal of L. We ex-
pect the projection ratio to be larger than unity and the
OI ratio to be smaller than unity. If no adjustment is
made to the covariance found through our standard pro-
cedure, this consistency check fails for the present SLP
analysis: both ratios are less than unity. This test did
not hold for the unadjusted signal covariance in our SST
analyses either, but a heuristic procedure was introduced
that changed only the distribution of energy over the
EOF modes and preserved the diagonality of L. This
approach implicitly assumed that the individual EOFs
modes could be used as they are, without any rotation.
Results of this procedure were quite satisfactory for the
SST analysis (see Fig. 15 of K97) but failed for the
present SLP analysis. Consequently, here we develop a
more complete and less heuristic procedure based on
Eqs. (A1) and (A2).

Inserting (A1) into (A2) to eliminate P p yields

Ap 5 L L,21AOI (A3)

in which Ap and AOI are the known estimates from the
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projection and OI solutions, respectively, and L is being
sought in the class of symmetric nonnegative definite
matrices. An exact solution to the nonlinear matrix equa-
tion (A3) can be constructed in the following way. We
define canonical decompositions of the symmetric pos-
itive matrices Ap and AOI by

Ap 5 Ep , AOI 5 EOI ,2 T 22 TS E S Ep p OI OI (A4)

where Ep and EOI are orthogonal matrices, while and2Sp

are positive diagonal matrices. Inserting Eq. (A4)2SOI

into (A3) we obtain
2 T 2 TE S E 5 LE S E L, orp p p OI OI OI

T T(E S )(E S ) 5 (LE S )(LE S ) .p p p p OI OI OI OI

The latter can be true if and only if there exists an
orthogonal matrix U such that

EpSpU 5 LEOISOI,

and thus

L 5 EpSp .21 TUS EOI OI (A5)

Now our task is to choose U so that L defined by formula
(A5) is symmetric and nonnegative definite. Symmetry
means that

21 T 21 T TE S US E 5 E S U S E orp p OI OI OI OI p p

21 T 21 21 T 21 TUS E E S 5 S E E S UOI OI p p p P OI OI

21 T 21 T5 (US E E S ) . (A6)OI OI p p

We define the singular value decomposition of
Ep by21 T 21S E SOI OI p

Ep 5 G1S ;21 T 21 TS E S GOI OI p 2 (A7)

G1 and G2 being orthogonal matrices, and S being a
diagonal matrix with nonnegative elements. Obviously,
the choice

U 5 G2
TG1

makes

5 G2S21 T 21 TUS E E S GOI OI p p 2

symmetric and thus satisfies Eq. (A6). As a result we
have

L 5 EpSpG2S Sp ,T TG E2 p (A8)

which is obviously symmetric and nonnegative (as S is
nonnegative). In order to compute the solution (A8) we
perform matrix decompositions (A4) and (A7) using
MATLAB software. All matrices involved in this com-
putation has the order equal to the dimension L of a
chosen reduced space (L 5 80 in the present applica-
tion).

The entire procedure of the analysis then performed
in the following two-stage way. The covariance of the
field is estimated; EOF patterns and eigenvalues are
computed and used in projection and OI analyses with-
out any adjustment. From the results of the analysis, Ap

and AOI are estimated, as is the signal covariance L,
computed according to formula (A8). Canonical decom-
position,

L 5 FL1FT,

shows that the EOF patterns found originally should be
rotated by the operator F and the distribution of energy
over these rotated (but still orthogonal!) patterns should
be given by the elements of L1. EOFs not included into
the reduced space are not being rotated, but their ei-
genvalues are modified according to the formula

5 gl i 1 c, i 5 L 1 1, . . . , M,1li

where g and c are constants that we defined from the
two conditions: conservation of the total variance y of
the spectrum

y 5 Tr[L1] 1 g(y 2 Tr[L]) 1 c(M 2 L),

and ‘‘no-jump’’ after the last reduced-space eigenvalue

glL11 1 c 5 .1lL

These conditions give the values of constants

1y 2 Tr[L ] 2 l (M 2 L)1 L 1g 5 , c 5 l 2 gl .L L11y 2 Tr[L] 2 l (M 2 L)L11

With this corrected estimate of covariance we rerun the
analysis and check if Eqs. (A1) and (A2) hold for Ap

and AOI estimated from its results (i.e., if the results of
the analysis are consistent with our a priori assumption
on the signal variance). If not, we could do another
iteration. However, for this particular SLP applications
the agreement was quite satisfactory.

To close the story, we examine why the heuristic
algorithm of K97 failed for the SLP analysis, but not
for the SST analysis of K98. For this we run our new
covariance reestimation algorithm for the SST analysis
of K98. The explanation is that the reduced-space EOF
rotation matrix F for the SLP analysis has more offdi-
agonal structure than that for the SST analysis. Also the
eigenvalues estimated by the present algorithm are much
closer to those estimated by the K97 method for SST
than for SLP.

As discussed in K97, a realistic estimate of the signal
covariance is of crucial importance for obtaining real-
istic theoretical error estimates. When we repeat the
experiment with the North Atlantic 1950–92 withheld
area as in K97 and K98 we find that the theoretical error
estimate in the middle of the North Atlantic withheld
area reaches 0.8 mb, while when all the available data
are used, the estimated error is about 0.3 mb [because
this value includes large-scale error only (Fig. 1c), ex-
cluding the influence of truncation error (Fig. 1b), it is
smaller than the North Atlantic error values in Fig. 2a
and Table 3]. Consistent with these error estimates, the
rms difference between the solutions with and without
the data in the chosen area almost reaches 0.6 mb. This
example is evidence that the analysis with the given
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settings produces reliable conservative error estimates
for the solution.
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