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DISCUSSION OF: A STATISTICAL ANALYSIS OF

MULTIPLE TEMPERATURE PROXIES: ARE

RECONSTRUCTIONS OF SURFACE TEMPERATURES

OVER THE LAST 1000 YEARS RELIABLE?∗

By Alexey Kaplan†

Lamont-Doherty Earth Observatory of Columbia University

McShane and Wyner (2010; hereinafter MW2010) demonstrated that in
many cases a comprehensive data set of p =1138 proxies (Mann et al., 2008)
did not predict Northern Hemisphere (NH) mean temperatures significantly
better than random numbers. This fact is not very surprising in itself: the
unsupervised selection of good predictors from a set of p≫n proxies of vary-
ing sensitivities might be too challenging a task for any statistical method
(p/nc ≈10; only nc=119 out of total n=149 years were used for calibra-
tion in MW2010 cross-validated reconstructions). However, some types of
noise1 systematically outperformed the real proxies (see two bottom pan-
els of MW2010 Figure 10). This finding begs further investigation: what do
these random numbers have that real proxies do not?

To investigate this question, the present analysis uses ridge regression
(RR, Hoerl and Kennard, 1970) instead of the Lasso.2 The regression model
used by MW2010 with Lasso and here with RR is

y = Xβ + β01n + ε,

where y is a column vector of n observations (annual NH temperatures), ε
is random error, X is a known n×p matrix of predictors (climate proxies). A
vector of regression coefficients β and an intercept constant β0 are to be de-
termined. A column n-vector 1n has all components equal one. Proxy records
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1Pseudoproxies used by MW2010 are called “noise” here; in climate research, pseudo-

proxies are synthetic combinations of a climate signal with some noise; without the former,
it is a pure noise.

2The difference is in the penalty norm: Lasso uses L1 while RR uses L2. MW2010 have
also argued that a rough performance similarity should exist between different methods
for p≫n problems (p.25)
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Fig 1. Cross-validated RMSE on 120 30-year holdout blocks for the RR reconstructions
from real climate proxies and from the random noise (one realization for each noise ex-
periment); cf. MW2010, Figure 9.

are standardized before use; in cross-validation experiments standardization
is repeated for each calibration period.

Let w be a column nc-vector such that wT
1nc

= 1. Define matrix-valued
functions W[w] = I−1nc

wT and R[S, λ, w] = Svc(Scc+λI)−1W[w]+1nv
wT ,

where S is a positive semidefinite n×n matrix, λ > 0 is the ridge parame-
ter found as a minimizer of the generalized cross-validation function (GCV,
Golub et al. 1979), matrix (or vector) subscripts c or v hereinafter indicate
submatrices corresponding to the calibration or validation periods, respec-
tively. The RR reconstruction ŷv of temperatures in the validation period
(a “holdout block” of nv=30 consecutive years) is a linear transformation:
ŷv = R[Sp, λ, e]yc, where Sp = X̃X̃T/p, X̃ is the standardized version of X,
and e = nc

−1
1nc

.
Using these formulas, the RR version of the MW2010 cross-validation tests

were performed for real proxies and for some noise types. Results are shown
in Figure 1. The cross-validated RMSE of the RR reconstructions are smaller
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Fig 2. Holdout RMSE for RR reconstructions as a function of time for real proxies (red)
and two 100-member ensemble means: white noise (blue) and AR(1) noise with ϕ =0.99
(black). Individual ensemble members are shown by magenta and yellow dots, respectively.
The probability limit (p → ∞) for the latter is shown by magenta dashes. Holdout RMSE
for simple kriging of the NH mean temperature index using an exponential semivariogram
(Le and Zidek, 2006) γ(τ) = λmin + 1 − exp[τ ln ϕ] with the GCV-selected nugget λmin =
ℓ(Φ, 0) and long decorrelation scale −1/ln(ϕ) = 99.5 years (τ is time in years) is shown
by green line.
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than Lasso values (cf MW2010, Figure 9), but the relative performance in
different experiments appears consistent between RR and Lasso. As in the
Lasso case, noise with high temporal persistence (ϕ ≥ 0.9 and Brownian
motion) outperformed the proxies. Figure 2 illustrates the time dependence
of the holdout error for the real-proxy, white-noise, and ϕ = 0.99 AR(1)
cases. There is a general similarity between these and the corresponding
curves in Figure 10 by MW2010.

Note that a traditional approach to hypothesis testing would evaluate an
RMSE corresponding to a regression of temperature data (y) on real proxies
(X) in the context of the RMSE probability distribution induced by the
assumed distribution of y under the hypothesized condition (e.g., β = 0).
However, MW2010 evaluate the RMSE of real proxies in the context of the
RMSE distribution induced by random values in X, not y. Such an approach
to testing a null hypothesis would be appropriate for an inverse relationship,
that is X = yβT + 1nβT

0 + ε. When used with a direct regression model
here, however, it results in the RMSE distribution with a surprising feature:
when p → ∞, RMSE values for individual realizations of the noise matrix
X converge in probability to a constant.

This convergence occurs because the columns x of X in the noise ex-
periments are i.i.d. from the noise distribution; AR(1) with ϕ = 0.99 is
considered here: x ∼ N (0, Φ), Φ = (ϕ|i−j|). The columns of X̃ are i.i.d. too,
hence the random matrix Sp = X̃X̃T/p is an average of p i.i.d. variates x̃x̃T .
Expectation Ψ = Ex̃x̃T exists; its elements are computed as expectations
of ratios and first inverse moments of quadratic forms in normal variables

(Jones, 1986, 1987). The weak law of large numbers applies, so Sp
P
→ Ψ.

Since the GCV function depends on S and w as well as on λ, its minimizing
λ will depend on these parameters too: λmin = ℓ[S, w]. Here GCV is assumed
well-behaved, so that ℓ is a single-valued function, continuous at (Ψ, e). From
the definition of R, B[S, e] ≡ R[S, ℓ[S, e], e] will also be continuous at S = Ψ,

thus Sp
P
→ Ψ implies ŷv = B[Sp, e]yc

P
→ B[Ψ, e]yc.

When p is finite but large, like p = 1138, reconstructions based on in-
dividual realizations of a noise matrix X are dominated by their constant
components, especially when ϕ ≈ 1: note the small scatter of RMSE values
in the ensemble of AR(1) with ϕ = 0.99 (yellow dots in Figure 2). The prob-
ability limit ŷv = B[Ψ, e]yc yields RMSE values (magenta dash in Figure
2) that are very close (1.3·10−3 ◦C RMS difference) to the ensemble mean
RMSE (black curve in Figure 2). To interpret this non-random reconstruc-
tion, consider its simpler analogue, using neither proxy standardization nor
a regression intercept (β0). Then, if the assumptions on the GCV function

change accordingly, ŷv
P
→ B[Φ, 0]yc = Φvc[Φcc + ℓ(Φ, 0)I]−1yc, i.e., a predic-
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tion of yv from yc by “simple kriging” (Stein 1999, p.8), which in atmospheric
sciences is called objective analysis or optimal interpolation (Gandin, 1965).
The RMSE corresponding to this solution is shown in Figure 2: it is also
close to the ensemble mean RMSE for AR(1) noise with ϕ = 0.99 (RMS
difference is 5.4·10−3 ◦C). The solution B[Ψ, e]yc, to which the noise recon-
structions without simplifications converge as p → ∞, is more difficult to
interpret. Still, it has a structure of an objective analysis solution and its
results are quite close to simple kriging: the RMS difference between the two
reconstructions over all holdout blocks is 7.7·10−3 ◦C.

Due to the large value of p in the MW2010 experiments, their tests with
the noise in place of proxies essentially reconstruct holdout temperatures by
a kriging-like procedure in the temporal dimension. The covariance for this
reconstruction procedure is set by the temporal autocovariance of the noise.
Long decorrelation scales (ϕ ≥ 0.95) gave very good results, implying that
long-range correlation structures carry useful information about predictand
time series that is not supplied by proxies. By using such a noise for their null
hypothesis, MW2010 make one skillful model (multivariate linear regression
on proxies) compete against another (statistical interpolation in time) and
conclude that a loser is useless. Such an inference does not seem justified.

Modern analysis systems do not throw away observations simply because
they are less skillful than other information sources: instead, they combine
information. MW2010 experiments have shown that their multivariate re-
gressions on the proxy data would benefit from additional constraints on the
temporal variability of the target time series, e.g., with an AR model. After
proxies are combined with such a model, a test for a significance of their
contributions to the common product could be performed.
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SUPPLEMENTARY MATERIAL

Supplement A: Codes, data, and detailed derivations

(http://www.imstat.org/aoas/supplements/default.htm). Temporarily it is
stored at http://rainbow.ldeo.columbia.edu/∼alexeyk/MW2010discAOAS/
kaplan discMW2010 code final 1Nov2010.tar.gz
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