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1 On the construction of VS-Lite pseudoproxies5

VS-Lite is a simple but realistic model for simulating tree-ring width variations as a thresh-6

olded minimization function of monthly temperature and soil moisture, scaled by insolation7

and integrated over a prescribed pre-season and growing season to produce an annual (grow-8

ing season) ring-width estimate (Tolwinski-Ward et al., 2011). Soil moisture, in turn, is9

estimated within VS-Lite via the Climate Prediction Center (CPC) Leaky Bucket model10

(Huang et al., 1996) and input monthly temperature and precipitation. The strengths and11

weaknesses of VS-Lite as a descriptor of actual tree-ring width data have been established12

(Tolwinski-Ward et al., 2011), and an algorithm for tuning the model for specific applications13

has been published (Tolwinski-Ward et al., 2013). Code for both the model and parame-14

ter estimation is available for download from the NOAA/National Climatic Data Center15

(ftp://ftp.ncdc.noaa.gov/pub/data/paleo/softlib/vs-lite/). We used VS-Lite version 2.5 to16

produce results for this manuscript. The parameter choices used to develop the VS-Lite17

pseudoproxies are described below.18

1.1 VS-Lite parameter choices19

VS-Lite has 4 environmental parameters; 8 additional parameters must be specified to run20

the embedded CPC/leaky bucket moisture model (Huang et al., 1996; Tolwinski-Ward et al.,21

2011). An important part of this study was therefore to determine whether the results22

are sensitive to parameter estimation. Previous work had suggested that results are not23

sensitive to specification of the CPC/leaky bucket moisture model parameters (Tolwinski-24

Ward et al., 2011), so we performed three classes of environmental parameter estimation25

experiments: (1) environmental parameters set to ±2 standard deviations above and below26

the monthly mean of gridpoint temperature and precipitation in the calibration period; (2)27

default parameters held constant at all locations (Tolwinski-Ward et al., 2011); and (3)28

environmental parameters tuned using the method of Tolwinski-Ward et al. (2013) to local29

warm season (NH: May–Oct; SH: Nov-Apr) monthly temperature and precipitation over30

the CFR calibration period (1856–1990). For all three tuning experiments, we examined31

basic statistics (probability density function, mean, median, mode, skewness, number of32

missing (non-growth) values) of the resulting VSL simulations before adding random noise33

at SNR=0.5 to form the VSL pseudoproxies. We also compared the parameterized VS-Lite34

simulations to the original input T and P series at each site and by comparing their first35

EOF and principal component to that of input T and P series.36

The median 1000–1855 C.E. correlation across all sites of the three parameter spec-37

ification experiments was highly significant (median p<0.001), but with shared variance38

between climatological and default simulations, at ≈10%, smaller than shared variance be-39

tween default and tuned simulations (≈59%) or between tuned and climatological simulations40
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b. Climatology−based VSL parameters
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c. Default VSL parameters
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d. Tuned VSL parameters

Figure 1: Simulated growth limitation of VS-Lite pseudoproxies by location. (a): All sites
in the pseudoproxy network. (b): With parameters tuned to the ±2σ values of T and cal-
culated M within the NH (SH) Apr-Sep (Oct-Mar) growing season, moisture-limited (blue),
temperature-limited (red), either moisture or temperature (green), and neither moisture nor
temperature limited (magenta) sites are evaluated as such if >95% of simulated years at
the site are limited by the respective growth function. Note that by this definition not all
sites will fall into one of these categories because of the >95% probability threshold. (c): as
in (b), except for default VS-Lite parameters (Tolwinski-Ward et al., 2011). (d): as in (b),
except for tuned VS-Lite parameters Tolwinski-Ward et al. (2013).
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(≈39%). In all experiment classes, simulated ring-width series produced some simulations41

with highly skewed and/or apparently threshholded responses that are inconsistent with42

actual observational ring width statistics (Mann et al., 2008). Somewhat surprisingly, prob-43

ability density functions for simulations using default parameters had smaller skewness and44

more Gaussian structure than tuned or climatological simulations. In the default and tuned45

parameter experiments, we were able to obtain spatially realistic patterns of sensitivity to46

moisture or temperature (Fig 1c,d), with primarily temperature dependent simulations in47

temperate and subpolar regions, and primarily moisture dependent simulations for semiarid48

subtropical regions. However, in the climatologically-tuned simulations, we were unable to49

obtain spatially realistic patterns of sensitivity to moisture or temperature (Fig. 1b). We50

also found that the climatological specification of parameters produced about 53% T1 esti-51

mates below freezing and about 21% M2 estimates above a volume/volume soil moisture of52

0.6, both of which are implausible. These results suggest that appropriate parameterization53

is a key component of the PPE design. Based on these results, we decided that the tuned or54

default parameters produced the most realistic and therefore most appropriate simulations55

for the PPEs presented in this study. Median default and tuned parameters are given in56

Table 1. Once white noise was added to the simulations to produce SNR=0.5 pseudoproxies,57

we found that the CFRs produced from default and tuned parameters produced statistics58

very similar to one another (Fig. 2).59

Parameter Default Tuned 25th percentile Tuned 50th percentile Tuned 75th percentile
T1(

oC) 4.2 2.7 4.4 6.2
T2(

oC) 10.6 11.4 12.9 16.5
M1(v/v) 0.028 0.031 0.069 0.089
M2(v/v) 0.34 0.32 0.43 0.47

Table 1: Comparison of default(Tolwinski-Ward et al., 2011) and tuned parameter sets. For
N=191 sets of 4 tuned parameters, the 25th, 50th and 75th percentile values across all N
parameter estimates is shown.

1.2 Uncertainty specification60

In addition, specification of uncertainty in the VS-Lite inputs is less straightforward than61

for direct climatic measures such as temperature or precipitation. While the latter may be62

used to create pseudoproxies by adding random variance to extracted climatic timeseries,63

the former realistically requires uncertainty in both the climatic timeseries input as well64

as in the proxy system model (VS-Lite) itself. Since we wished to create pseudoproxies65

differing primarily in their mapping from surface climate conditions, we first created noise-66

free VS-Lite simulations, analogous to extracting noise-free temperature timeseries from67

model simulations in prior PPE work (Smerdon, 2012). Let us denote by X these noise-68

free timeseries (T, P, T+P, VSL), extracted or calculated from the ECHO-G output, which69

are standardized to zero mean and unit variance. X is the “signal”. Let σ2

ǫ < 1 be the70

variance of independent and normally-distributed random timeseries ǫ (“noise”). Then the71

pseudoproxy D with zero mean, unit variance, and SNR by standard deviation
√

1− σ2
ǫ/σǫ72
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Figure 2: Sensitivity of results to plausible VS-Lite parameter sets. Tuned (left panels)
vs. untuned (right panels) VSL-pseudoproxy derived CFR skill (upper row) and standard
deviation ratio maps (lower row).

is (Tolwinski-Ward et al., 2013):73

D =
√

(1− σ2
ǫ )X + ǫ

For σǫ =
√

4/5, SNR by standard deviation is
√

1− σ2
ǫ/σǫ =

√

1− 4/5/
√

4/5 = 0.5.74

1.3 Observing network75

A third source of uncertainty is in the observational network. Dendrochronological indicators76

(tree ring width or maximum latewood density) are found in only 191 of the 283 pseudoproxy77

gridpoints mapped from (Mann et al., 2008) at 5o x 5o resolution (Fig. 1). We therefore had78

to make a choice: develop climate field reconstructions based on a realistic dendrochronolog-79

ical network, or preserve a direct network comparison to the results of Smerdon et al. (2011)80

and others. We made the former choice, recognizing that results presented in this work are81

less skillful than and can only be qualitatively compared to prior work on the Mann et al.82

(2008) network.83
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2 Choice of last millennium simulation84

We have used the ECHO-G “ERIK2” last millennium simulation (González-Rouco et al.,85

2006, 2009) as the basis of our PPE design. There are now multiple last-millennium sim-86

ulations available from fully coupled GCMs (Taylor et al., 2012), all of which can serve87

as the basis of a given PPE framework. The ECHO-G ERIK2 simulation is chosen here88

in part for continuity, given that Smerdon et al. (2011) used the ECHO-G and CCSM 1.489

last-millennium simulations to perform similar PPEs. Although the earlier results are not90

directly comparable because we have emulated a subset of the Mann et al. (2008) proxy91

network that reflects the availability of only dendroclimatic records, the qualitatively similar92

PPE designs allow meaningful comparisons between the current results using the ECHO-G93

simulation and those from Smerdon et al. (2011). The CCSM1.4 last-millennium simulation94

was not used herein because the simulated precipitation fields, which are necessary for the95

current PPE construction, were not available publicly. Moreover, PPEs using the ECHO-G96

last-millennium simulation in Smerdon et al. (2011) yielded reconstructions that generally97

validated better than those constructed from the CCSM1.4 simulation, including perfor-98

mance associated with the Northern Hemisphere mean. This improved performance baseline99

allows for greater separation between reconstruction results based on the more diverse pseu-100

doproxy networks that were constructed for this study.101

3 Choice of CFR algorithm102

The CCA method was used exclusively for the PPEs performed herein. Multiple CFR103

methods have now been tested and compared in pseudoproxy contexts (Smerdon, 2012;104

Smerdon et al., 2011; Wang et al., 2014; Tingley et al., 2012). Although small differences105

exist among methods, the current collection of PPEs reported in the literature indicate106

that the field performance of available CFR methods, including CCA, is similar. We there-107

fore have employed a single CFR method for our purposes, because our focus is on the108

effects of differences in the pseudoproxy network design, not on methodological differences109

across multiple CFR techniques. All of the pseudoproxy constructions used in this study110

will be made available for further testing across different methodological applications, at111

http://one.geol.umd.edu/www/data/.112
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4 Random and systematic error in reconstructed fields113

4.1 Root-mean-square error (RMSE)114
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b. Precipitation Pseudoproxies
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c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure 3: (Supplemental Materials) Root-mean-square error (RMSE) fields for: (a)
Temperature-only, (b) precipitation-only, (c) precipitation/temperature, and (d) VS-Lite
pseudoproxy-based reconstruction of mean annual temperature.
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4.2 Mean bias115
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b. Precipitation Pseudoproxies

−180 −120 −60 0 60 120 180

−90

−60

−30

0

30

60

90

Mean Bias (K)
−1.5 −1 −0.5 0 0.5 1 1.5

 

 

c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure 4: (Supplemental Materials) Mean bias fields for: (a) Temperature-only, (b)
precipitation-only, (c) precipitation/temperature, and (d) VS-Lite pseudoproxy-based re-
construction of mean annual temperature.
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4.3 Resolved fraction of high-frequency amplitude variance116
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b. Precipitation Pseudoproxies
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c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure 5: (Supplemental Materials) Highpass amplitude ratio (σCFR/σtruth, f>1/20y) fields
for: (a) Temperature-only, (b) precipitation-only, (c) precipitation/temperature, and (d)
VS-Lite pseudoproxy-based reconstruction of mean annual temperature.
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4.4 Resolved fraction of low-frequency amplitude variance117
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b. Precipitation Pseudoproxies
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c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure 6: Lowpass amplitude ratio (σCFR/σtruth, f<1/20y) fields for: (a) Temperature-only,
(b) precipitation-only, (c) precipitation/temperature, and (d) VS-Lite pseudoproxy-based
reconstruction of mean annual temperature.
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5 Local correlations between pseudoproxies118
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f. Correlation of VSL with local T, 15 year means
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g. Correlation of VSL with local P, 15 year means

 180oW  120oW   60oW    0o    60oE  120oE  180oW 

  80oS 

  40oS 

   0o  

  40oN 

  80oN 

N=14

N=15

N=162

h. Correlation of P with local T, 15 year means

Figure 7: a: Correlation of T and T+P pseudoproxies (red: p≤0.05, blue: 0.05<p≤0.10, green:
p>0.10) for SNR=0.5 case, 1721-1855 validation interval, N=135. b: As in (a), except for correla-
tion of T and VSL pseudoproxies. c: As in (a), except for correlation of VSL and P pseudoproxies.
d: As in (a), except for correlation of T and P pseudoproxies. Panels e,f,g,h : as in panels a,b,c,d,
except for correlations of 15-year averages for the same period (N=9).
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6 Truncation parameters for CCA-based reconstruc-119

tions120

PPE dcca dp dT

T 8 21 26
P 4 26 6
T+P 12 30 26
VSL 7 25 10

Table 2: Truncation parameters for CCA-based reconstructions. dcca = number of EOF
patterns of calibrated pseudoproxy-target correlation. dp = number of EOF patterns resolved
in the pseudoproxy data. dT = number of EOF patterns resolved in the calibration target
temperature field, following Smerdon et al. (2011).
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