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Climate field reconstructions (CFRs) of the global annual surface air tem-

perature (SAT) field and associated global area-weighted mean annual tem-

perature (GMAT) are derived in a collection of pseudoproxy experiments for

the past millennium. Pseudoproxies are modeled from temperature (T), pre-

cipitation (P), T+P, and VS-Lite (VSL), a nonlinear and multivariate proxy

system model for tree-ring widths. Spatial patterns of reconstruction skill

and spectral bias for the T+P and VSL-derived CFRs are similar to those

previously shown using temperature-only pseudoproxies, but demonstrate

overall degraded skill and spectral bias for SAT reconstruction. Analysis of

GMAT spectra nevertheless suggests that the true GMAT frequency spec-

trum is resolved by those pseudoproxies (T, T+P, and VSL) that contain

some temperature information. The results suggest that mixed temperature

and moisture-responding paleoclimate data may produce actual GMAT re-

constructions with skill, error and spectral characteristics like those expected

from univariate and linear temperature responders, but spatially-resolved CFR

results should be analyzed cautiously.
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1. Introduction

Pseudoproxy experiments (PPEs; see Smerdon [2012] for a comprehensive review) are

synthetic evaluations of the uncertainties associated with the reconstruction of actual

climate indices and climate fields. Because the PPE construct is systematic, albeit with

realistically-chosen observing sites, observational uncertainty, and reconstruction method-

ology, PPE results can be used to assess the likely impact of climate field reconstruction

(CFR) uncertainties via controlled experimentation. PPE-based research has shown that

observing network [Evans et al., 1998, 2001, 2002], space [Smerdon et al., 2011a], time and

frequency [von Storch et al., 2004; Mann et al., 2005; von Storch et al., 2009; Wang et al.,

2014], methodology [von Storch et al., 2009; Smerdon et al., 2011b], paleodata type [Evans

et al., 2002], environmental response [Franke et al., 2013], error model [von Storch et al.,

2009], reconstruction target [Smerdon et al., 2011a; Christiansen, 2011; Emile-Geay et al.,

2013], and possibly forcing mechanism [Wang et al., 2014] can all substantially influence

the skill and uncertainty characteristics of CFRs and derived indices.

One of the most important sets of annual-resolution paleodata are tree-ring width

chronologies (e.g. Evans et al. [2013], Wang et al. [2014]). Although selected for use

in CFRs to reflect a univariate and linear proxy system response to temperature [Mann

et al., 1999], trees generally represent a nonlinear and multivariate sensor of environmental

variations [Fritts , 1976; Cook and Kairiukstis , 1990; Vaganov et al., 2006, 2011; Franke

et al., 2013]. Studies have examined the sensitivity of actual CFRs to inclusion of tree-

ring observations [Mann et al., 1998; Evans et al., 2002; Mann et al., 2008], but CFR

skill and uncertainty arising from use of tree-ring width chronologies (or, for that mat-
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ter, any nonlinear or non-univariate proxy system) have not been systematically isolated

and explored in the PPE context. Here we assess CFR uncertainty in a PPE in which

pseudoproxies are modeled using information other than surface temperature, including

a proxy system model for tree-ring width variations [Evans et al., 2006a; Graham and

Wahl , 2011]. Although a vast simplification of tree physiology, this model, VS-Lite, is

realistically multivariate and nonlinear, and has been validated against actual tree-ring

width chronology data [Vaganov et al., 1999; Evans et al., 2006b; Anchukaitis et al., 2006;

Tolwinski-Ward et al., 2011a, b; Breitenmoser et al., 2014]. We use the PPE construct

to infer how the skill and uncertainty attributes of real-world temperature CFRs may

depend on the linearity and dimensionality of the proxy system models on which they are

based.

2. Experimental Design

As our reconstruction target we used annually-averaged surface temperature fields from

the last millennium “ERIK-2” run (1000–1990 C.E.; González-Rouco et al. [2006, 2009])

of the ECHO-G AOGCM [Legutke and Voss , 1999; Zorita et al., 2005], interpolated to

5 x 5 degree spatial resolution [Smerdon et al., 2011b], with an observational mask that

approximates data availability from the gridded temperature product of Brohan et al.

[2006] (Fig. 1; for further details, see Mann et al. [2008] and Smerdon et al. [2011b]).

Although CMIP5/PMIP3 simulations are now available [Taylor et al., 2012], use of the

“ERIK-2” simulation in these experiments allows direct comparison with other PPEs in

the literature that use only mean annual surface air temperature to construct the pseu-

doproxies; see Supporting Information (hereinafter SI) for more information. ECHO-G
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“ERIK-2” simulated precipitation and temperature fields differ systematically from cli-

matological observations in mean, annual cycle and variance at the gridpoint scale over

some regions in which we simulate tree-ring widths, but they are also broadly realistic

at the large scale [Min et al., 2005a, b], as expected from GCM output [Zorita et al.,

1995; von Storch, 2010]. Therefore, we did not correct ECHO-G output for bias rela-

tive to observed climatology prior to construction of the pseudoproxies. We used the

model output to create pseudoproxies at 191 grid cells in which dendrochronological data

(tree-ring width or maximum latewood density) were available in the Mann et al. [2008]

multiproxy network. Four sets of pseudoproxies were derived from ECHO-G output: (1)

annually averaged temperature (T); (2) annually-averaged precipitation (P); (3) equally

weighted sum of annual temperature and annual precipitation (T+P); and (4) tree-ring

width chronologies simulated by VS-Lite (VSL), for which inputs were site latitude and

monthly temperature and precipitation (SI Section 1.2).

VS-Lite is a simple but realistic model for simulating tree-ring width variations as a

thresholded minimization function of temperature and soil moisture, scaled by insolation

and integrated over a prescribed pre-season and growing season [Tolwinski-Ward et al.,

2011a]. Soil moisture, in turn, is estimated within VS-Lite via the Climate Prediction

Center (CPC) Leaky Bucket model [Huang et al., 1996] and input temperature and pre-

cipitation. We implemented VS-Lite using both tuned (SI; Tolwinski-Ward et al. [2013])

and default [Tolwinski-Ward et al., 2011a] parameters. Tolwinski-Ward et al. [2013] found

that the use of biased inputs may also bias estimation of the VS-Lite parameters; the au-

thors also found that the skill of VS-Lite simulations may be sensitive to both moisture
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and temperature parameters depending on climatology of the location. However, results

of VS-Lite simulations with tuned and default parameters are quite similar (1000–1855

C.E. median correlation over 191 raw simulations = 0.77; 80% of correlations within the

interval 0.39-0.97). When evaluated by location for moisture and temperature limitations,

both tuned and default simulations produce results that are realistic (SI Fig. 1). As in the

real world, most simulated high latitude sites are temperature-limited; moisture-limited

sites are found in semi-arid regions, and there are few sites that are either moisture or

temperature-limited [Babst et al., 2013; St. George and Ault , 2014], consistent with prior

expectations based on principles of dendrochronology and observations [Fritts , 1976].

To produce the CFRs, we added Gaussian uncorrelated noise with mean zero and vari-

ance 4/5 to all centered, noise-free candidate series (T, P, T+P, VSL) scaled to a variance

of 1/5. This construct (see SI) results in pseudoproxies with zero mean, unit variance,

and signal-to-noise ratio (SNR) by standard deviation [Smerdon, 2012] of 0.5, with the

added noise term representing the local observational error with respect to surface air

temperature. For T-based pseudoproxies, this may be interpreted simply as measurement

uncertainty, but for T+P, P, and VSL, the noise term also represents the observational

uncertainty arising from the pseudoproxy formulation itself. It may not, however, rep-

resent sources of variation not directly related to climate [von Storch et al., 2009]. We

used canonical correlation analysis (CCA; Smerdon et al. [2011b]; SI) to produce each

CFR, with pseudoproxy calibration over the period 1856–1990 C.E. We report validation

statistics for the full reconstruction period 1000–1855 C.E. The skill of reconstructed tem-

perature fields is evaluated using correlation, root-mean-squared error (RMSE), bias, and
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amplitude ratio (reconstructed amplitude/true amplitude, as measured by standard devi-

ation of the fields), all of which are measured relative to the “true” fields known from the

complete and original ECHO-G surface temperatures. For each PPE, we also constructed

area-weighted global mean annual temperature (GMAT) timeseries and their spectra for

comparison with the true GMAT timeseries and spectrum.

3. CFR skill and uncertainty

Correlation fields for the four PPEs are shown in Figure 2; Table 1 gives pointwise-mean

and area-weighted global mean summary statistics. As long as temperature information is

part of the pseudoproxy construction, validation-period skill, bias, and resolved amplitude

patterns for gridded fields (Figs. 2,3; SI Figs. 3,4) and GMAT timeseries (Table 1)

are similar, albeit weaker, than those reported by Smerdon et al. [2011a] for a larger

multiproxy PPE network (283 locations vs. the subset of 191 sites studied here, at which

tree ring-width or maximum latewood density are found; Fig. 1), for which pseudoproxies

were based solely on temperature (Smerdon et al. [2011a], SI Fig. S4, Table S4). The

CFR derived solely from precipitation (Fig. 2b; Table 1) has relatively poor skill and

uncertainty characteristics. These results partly arise from the number of coupled CCA

patterns resolved for each PPE (SI Table 2; Smerdon et al. [2011b]): 8 (12,7) spatial

patterns are calibrated in the T (T+P, VSL) PPEs, but only 4 patterns are calibrated in

the P-based PPE.

For all experiments, and consistent with the results of Smerdon et al. [2011a], skill and

amplitude recovery is generally highest in regions having dense observational coverage

(compare Fig. 1 to Figs. 2 and 3). This is a result that has previously been shown across
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reconstruction methodologies [Smerdon et al., 2011a], but likely deteriorates as observing

network density decreases over time [Wang et al., 2014]. Not surprisingly, given the PPE

target of surface temperature, the highest levels of regional skill are found in densely-

observed parts of North America and Europe (Fig. 1) for the temperature-based PPE (Fig.

2). The T+P PPE produces almost as much skill in these regions (Fig. 2a,c). The VSL-

based PPE (Fig. 2d) produces a similar but overall weaker skill pattern, but not as weak

as that resulting from use of precipitation-based pseudoproxies (Fig. 2a). These relative

performance characteristics are also found in the resolved amplitude (Fig. 3), RMSE (SI

Fig. 3), mean bias (SI Fig. 4), and frequency-band-resolved variance (SI Figs. 5, 6) fields.

Locally (SI Fig. 7), these results are consistent with limited correlation between gridpoint

temperature and precipitation timeseries, the increased complexity of the pseudoproxy

formulation in VSL, and the “lossy” nature of information via the transformation of T and

P into simulated ring widths [Tolwinski-Ward et al., 2014]. Although the T+P candidate

linearly retains approximately 50% of the variance in the T candidate, and P contains very

little information correlated with T, VS-Lite’s trivariate growth function is dependent on

nonlinear and bivariate transformation of T and P into soil moisture, nonlinear scaling

by insolation, and subannually-resolved, thresholded dependence on temperature and soil

moisture [Tolwinski-Ward et al., 2011a]. The net effect of these features appears to remove

VSL further from a linear correlation with the target field at the pseudoproxy site than

T+P, but not as far as P (SI Fig. 7).

We would expect that the common spatial variations in skill, error and bias, which are

observed across all PPEs, to be in part generated from teleconnections between densely
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and sparsely-observed regions, and therefore somewhat dependent on the climate model

and simulation on which the PPE is based [Smerdon et al., 2011a;Wang et al., 2014]. With

the climate model basis and the observing network as constants in this set of experiments,

T, T+P and VSL-based PPEs indicate some skill in regions without dense observations

– for instance, the Indo-Pacific region and the tropics more generally – while the P-

based PPE doesn’t show skill in these same regions. This suggests that remote CFR

skill derives from recovery of large-scale patterns by the reconstruction methodology, and

from resolved large-scale patterns in SAT in particular. Given that there are large-scale

patterns in CFR skill, bias, RMSE and amplitude recovery for all PPEs (Figs. 2,3; SI Figs.

3–6), however, the results suggest that even precipitation or moisture-dominated paleo-

observations may produce validated non-local CFR skill, perhaps because of the covariance

of temperature and precipitation patterns in the climate system, here as represented in

a climate simulation. Examination of the amplitude patterns over lowpass and highpass

frequency bands (SI Figs. 5,6) suggests that much of the similarity arises from resolution

of low-frequency (<1/20 cyc/yr) signals, with only limited skill arising from the correlation

of T+P, P, and VSL pseudoproxies with local T (SI Fig. 7).

Spectral analysis of detrended reconstructed GMAT for the validation interval 1000–

1855 C.E., and comparison to ECHO-G ‘truth’ (black line) suggests that PPE skill in the

spectral domain is a function of frequency. All PPEs underestimate the low-frequency

variance and overestimate variance at frequencies higher than about 0.4 cyc/yr (Fig. 4),

thereby underestimating the true ‘redness’ of the ECHO-G power spectrum [von Storch

et al., 2004, 2009]. However, for frequencies less than about 1/5 cyc/yr, spectra for T,
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T+P and VSL-based CFRs are indistinguishable within uncertainty (Fig. 4), which sug-

gests that partial temperature responders, even if realistically nonlinear and multivariate,

may nevertheless produce accurate spectra of reconstructed GMAT [Franke et al., 2013].

Examination of the resolved amplitude patterns for lowpass and highpass frequency bands

(SI Figs. 5,6) suggests that much of the skill in the T, T+P and VSL-based PPEs arises

from resolution of low-frequency (<1/20 cyc/yr) signals. In contrast, but consistent with

the results of Franke et al. [2013] for precipitation proxies, the resolved variance in the

GMAT reconstruction for the P-based CFR is significantly smaller than truth for this

frequency interval, and fails to resolve low (<1/5 cyc/yr) frequencies (Fig 4; SI Figs. 5,6).

A similar result is observed for the spectrum of GMAT reconstructed from pseudoproxies

constructed using the soil moisture model [Huang et al., 1996] embedded within VS-Lite,

but with even less total resolved variance than observed for the P-based CFR (results not

shown). Together these results suggest that skill from mixed temperature and moisture

responders for reconstruction of the SAT field may be biased in amplitude as a function of

both frequency and observing network. Regional-level analysis of actual CFR results, es-

pecially outside of densely observed regions in space and/or time (e.g. Mann et al. [2009])

should therefore proceed with caution and additional validation prior to interpretation

[von Storch et al., 2009; Smerdon et al., 2011a; Franke et al., 2013; Wang et al., 2014].

4. Conclusion

PPE results using pseudoproxies that realistically (if crudely) mimic the multivariate

and nonlinear response of tree-ring width variations to environmental forcing suggest that

CFRs based largely on tree-ring widths should have spatial skill and error similar in pat-
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tern but substantially poorer in quality than CFRs produced from idealized univariate

linear temperature responders. However, as long as the responder contains some temper-

ature information, GMAT reconstructions derived from such indicators should accurately

resolve the low frequency spectral characteristics of the true climate. More generally, the

results presented here may also have implications for the expected skill and uncertainty

for surface temperature CFRs based on other proxy systems having mixed moisture and

temperature responses, such as the stable isotopic composition of various marine and

terrestrial archives, or for multiproxy-based GMAT reconstructions based on collections

of paleodata with combined multivariate responses (e.g. Mann et al. [1998]; Cook et al.

[1999]; Evans et al. [2002]; Mann [2002]; Cook et al. [2004]; Mann et al. [2008]). These

results may not take into account many systematic observational uncertainties in actual

paleodata [Evans et al., 2013] and CFR construction [Emile-Geay et al., 2013], such as

chronological uncertainty (e.g. Anchukaitis and Tierney [2012]; Comboul et al. [2014]),

response seasonality (e.g. St. George and Ault [2014]), or standardization or signal fil-

tering choices (e.g. Melvin and Briffa [2008]). We also caution that these results may

be sensitive to the choice of realistic proxy system model parameters (e.g. Anchukaitis

et al. [2012]). In the real world, the low-frequency signals in the paleo-observations them-

selves are difficult to validate against direct observations; doing so for spatially-resolved

CFRs, given the results presented here, is only more so. Nevertheless, a strategy that

includes further improvements in the observing network extent, reconstruction methods,

observational SNR properties, and interpretive modeling of tree-ring width and other pa-
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leodata should continue to improve the quality and utility of real-world CFRs for analysis

of regional-to-global scale surface temperature variations.
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Figure 1. Top: Map of all grid cells containing climate proxy data in the Mann et al. [2008]

network on the 5x5 degree grid (open red squares) and those that just contain dendroclimatic

data (closed black circles). Grey shading indicates reconstruction target field masked by actual

surface air temperature availability [Brohan et al., 2006]. Bottom: Map of the standard deviation

of mean annual surface temperature from the “ERIK-2” ECHO-G simulation [González-Rouco

et al., 2006, 2009], based on the reconstruction validation interval 1000–1855 C.E.
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a. Temperature Pseudoproxies
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b. Precipitation Pseudoproxies

−180 −120 −60 0 60 120 180

−90

−60

−30

0

30

60

90

Correlation (r)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 

 

c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure 2. CFR correlation with true field for: (a) Temperature-only (T), (b) precipitation-only

(P), (c) temperature + precipitation (T+P), and (d) VS-Lite pseudoproxy-based reconstruction

of mean annual temperature (VSL).
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−180 −120 −60 0 60 120 180

−90

−60

−30

0

30

60

90

Standard Deviation Ratio (reconstruction to truth)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 3. CFR standard deviation ratios (σCFR/σtruth) for: (a) Temperature-only (T),

(b) precipitation-only (P), (c) temperature + precipitation (T+P), and (d) VS-Lite (VSL)

pseudoproxy-based reconstruction of mean annual temperature.
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Figure 4. Top: Timeseries of ECHO-G global mean air temperature (GMAT) and recon-

structed GMAT derived from temperature (T), temperature+precipitation (T+P), precipitation

(P), and VS-Lite (VSL) pseudoproxies. Series have been smoothed with a decadal-timescale filter

for clarity. Bottom: Multitaper power spectra for: T, P+T, P, and VSL GMAT for detrended

timeseries for the validation interval 1000–1855 C.E. Dark grey shading are 95% amplitude con-

fidence intervals for the ECHO-G spectrum, and light grey shading are 95% confidence intervals

for the other spectral estimates.
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Table 1. Summary statistics for PPE experiments

PPEa r(GMAT)b r(Field)c σCFR/σtrue
d Biase RMSEf

T 0.78(<0.0001) 0.41 0.45 0.11 0.53
P 0.26(0.13) 0.14 0.30 0.29 0.67
T+P 0.77(<0.0001) 0.39 0.45 0.12 0.54
VSL 0.65(0.0003) 0.33 0.41 0.19 0.60

a Pseudoproxy experiments, as described in Section 2

b Correlation between reconstructed and true area-weighted GMAT; p-values for GMAT cor-

relations in parentheses given estimated effective degrees of freedom = 21, 21, 21 and 24 for T,

P, T+P and VSL-based area-weighted GMAT from the respective PPEs.
c Point-wise correlation between reconstructed and true surface temperature fields

d mean gridpoint amplitude ratio, reconstructed/true

e mean gridpoint bias, reconstructed-true

f mean gridpoint root-mean-square error, reconstructed-true
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