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S1. On the construction of VS-Lite pseudoproxies

VS-Lite is a simple but realistic model for simulating tree-ring width variations as a thresh-
olded minimization function of monthly temperature and soil moisture, scaled by insolation
and integrated over a prescribed pre-season and growing season to produce an annual (grow-
ing season) ring-width estimate (Tolwinski-Ward et al., 2011). Soil moisture, in turn, is
estimated within VS-Lite via the Climate Prediction Center (CPC) Leaky Bucket model
(Huang et al., 1996) and input monthly temperature and precipitation. The strengths and
weaknesses of VS-Lite as a descriptor of actual tree-ring width data have been established
(Tolwinski-Ward et al., 2011), and an algorithm for tuning the model for specific applications
has been published (Tolwinski-Ward et al., 2013). Code for both the model and parame-
ter estimation is available for download from the NOAA/National Climatic Data Center
(ftp://ftp.ncdc.noaa.gov/pub/data/paleo/softlib/vs-lite/). We used VS-Lite version 2.5 to
produce results for this manuscript. The parameter choices used to develop the VS-Lite
pseudoproxies are described below.

S1.1. VS-Lite parameter choices

VS-Lite has 4 environmental parameters; 8 additional parameters must be specified to run
the embedded CPC/leaky bucket moisture model (Huang et al., 1996; Tolwinski-Ward et al.,
2011). An important part of this study was therefore to determine whether the results
are sensitive to parameter estimation. Previous work had suggested that results are not
sensitive to specification of the CPC/leaky bucket moisture model parameters (Tolwinski-
Ward et al., 2011), so we performed three classes of environmental parameter estimation
experiments: (1) environmental parameters set to ±2 standard deviations above and below
the monthly mean of gridpoint temperature and precipitation in the calibration period; (2)
default parameters held constant at all locations (Tolwinski-Ward et al., 2011); and (3)
environmental parameters tuned using the method of Tolwinski-Ward et al. (2013) to local
warm season (NH: May–Oct; SH: Nov-Apr) monthly temperature and precipitation over
the CFR calibration period (1856–1990). For all three tuning experiments, we examined
basic statistics (probability density function, mean, median, mode, skewness, number of
missing (non-growth) values) of the resulting VSL simulations before adding random noise
at SNR=0.5 to form the VSL pseudoproxies. We also compared the parameterized VS-Lite
simulations to the original input T and P series at each site and by comparing their first
EOF and principal component to that of input T and P series.

The median 1000–1855 C.E. correlation across all sites of the three parameter spec-
ification experiments was highly significant (median p<0.001), but with shared variance
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b. Climatology−based VSL parameters
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c. Default VSL parameters
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d. Tuned VSL parameters

Figure S1. Simulated growth limitation of VS-Lite pseudoproxies by location. (a): All
sites in the pseudoproxy network. (b): With parameters tuned to the ±2σ values of T
and calculated M within the NH (SH) Apr-Sep (Oct-Mar) growing season, moisture-limited
(blue), temperature-limited (red), either moisture or temperature (green), and neither
moisture nor temperature limited (magenta) sites are evaluated as such if >95% of simulated
years at the site are limited by the respective growth function. Note that by this definition
not all sites will fall into one of these categories because of the >95% probability threshold.
(c): as in (b), except for default VS-Lite parameters (Tolwinski-Ward et al., 2011). (d): as
in (b), except for tuned VS-Lite parameters Tolwinski-Ward et al. (2013).
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between climatological and default simulations, at ≈10%, smaller than shared variance be-
tween default and tuned simulations (≈59%) or between tuned and climatological simulations
(≈39%). In all experiment classes, simulated ring-width series produced some simulations
with highly skewed and/or apparently threshholded responses that are inconsistent with
actual observational ring width statistics (Mann et al., 2008). Somewhat surprisingly, prob-
ability density functions for simulations using default parameters had smaller skewness and
more Gaussian structure than tuned or climatological simulations. In the default and tuned
parameter experiments, we were able to obtain spatially realistic patterns of sensitivity to
moisture or temperature (Fig S1c,d), with primarily temperature dependent simulations in
temperate and subpolar regions, and primarily moisture dependent simulations for semiarid
subtropical regions. However, in the climatologically-tuned simulations, we were unable to
obtain spatially realistic patterns of sensitivity to moisture or temperature (Fig. S1b). We
also found that the climatological specification of parameters produced about 53% T1 esti-
mates below freezing and about 21% M2 estimates above a volume/volume soil moisture of
0.6, both of which are implausible. These results suggest that appropriate parameterization
is a key component of the PPE design. Based on these results, we decided that the tuned or
default parameters produced the most realistic and therefore most appropriate simulations
for the PPEs presented in this study. Median default and tuned parameters are given in Ta-
ble S1. Once white noise was added to the simulations to produce SNR=0.5 pseudoproxies,
we found that the CFRs produced from default and tuned parameters yielded statistics very
similar to one another (Fig. S2).

Parameter Default Tuned 25th percentile Tuned 50th percentile Tuned 75th percentile
T1(

oC) 4.2 2.7 4.4 6.2
T2(

oC) 10.6 11.4 12.9 16.5
M1(v/v) 0.028 0.031 0.069 0.089
M2(v/v) 0.34 0.32 0.43 0.47
Table S1. Comparison of default(Tolwinski-Ward et al., 2011) and tuned parameter sets.
For N=191 sets of 4 tuned parameters, the 25th, 50th and 75th percentile values across all
N parameter estimates is shown.

S1.2. Uncertainty specification

Specification of uncertainty in the VS-Lite inputs is less straightforward than for direct
climatic measures such as temperature or precipitation. While the latter may be used to
create pseudoproxies by adding random variance to extracted climatic timeseries, the former
realistically requires uncertainty in both the climatic timeseries input as well as in the proxy
system model (VS-Lite) itself. Since we wished to create pseudoproxies differing primarily in
their mapping from surface climate conditions, we first created noise-free VS-Lite simulations,
analogous to extracting noise-free temperature timeseries from model simulations in prior
PPE work (Smerdon, 2012). Let us denote by X these noise-free timeseries (T, P, T+P,
VSL), extracted or calculated from the ECHO-G output, which are standardized to zero
mean and unit variance. X is the “signal”. Let σ2

ǫ < 1 be the variance of independent
and normally-distributed random timeseries ǫ (“noise”). Then the pseudoproxy D with zero
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VS−Lite Default Pseudoproxies
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VS−Lite Default Pseudoproxies
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Figure S2. Sensitivity of results to plausible VS-Lite parameter sets. Tuned (left panels)
vs. untuned (right panels) VSL-pseudoproxy derived CFR skill (upper row) and standard
deviation ratio maps (lower row).

mean, unit variance, and SNR by standard deviation
√

1− σ2
ǫ/σǫ is (Tolwinski-Ward et al.,

2013):

D =
√

(1− σ2
ǫ )X + ǫ

For σǫ =
√

4/5, SNR by standard deviation is
√

1− σ2
ǫ/σǫ =

√

1− 4/5/
√

4/5 = 0.5.

S1.3. Observing network

A third source of uncertainty is in the observational network. Dendrochronological indicators
(tree ring width or maximum latewood density) are found in only 191 of the 283 pseudoproxy
gridpoints mapped from (Mann et al., 2008) at 5o x 5o resolution (Fig. 1). We therefore had
to make a choice: develop climate field reconstructions based on a realistic dendrochrono-
logical network, or preserve a direct network comparison to the results of Smerdon et al.
(2011) and others. We made the former choice, recognizing that results presented in this
work are less skillful than, and can only be qualitatively compared to, prior work that used
a full spatial approximation of the Mann et al. (2008) network.
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S2. Choice of last millennium simulation

We have used the ECHO-G “ERIK2” last millennium simulation (González-Rouco et al.,
2006, 2009) as the basis of our PPE design. There are now multiple last-millennium sim-
ulations available from fully coupled GCMs (Taylor et al., 2012), all of which can serve as
the basis of a given PPE framework. The ECHO-G ERIK2 simulation is chosen here in
part for continuity, given that Smerdon et al. (2011) used the ECHO-G ERIK2 and Com-
munity Climate System Model (CCSM) version 1.4 last-millennium simulations to perform
similar PPEs. Although the earlier results are not directly comparable because we have em-
ulated a subset of the Mann et al. (2008) proxy network that reflects the availability of only
dendroclimatic records, the qualitatively similar PPE designs allow meaningful comparisons
between the current results using the ECHO-G simulation and those from Smerdon et al.
(2011). The CCSM1.4 last-millennium simulation was not used herein because the simulated
precipitation fields, which are necessary for the current PPE construction, were not available
publicly. Moreover, PPEs using the ECHO-G last-millennium simulation in Smerdon et al.
(2011) yielded reconstructions that generally validated better than those constructed from
the CCSM1.4 simulation, including performance associated with the Northern Hemisphere
mean. This improved performance baseline allows for greater separation between reconstruc-
tion results based on the more diverse pseudoproxy networks that were constructed for this
study.

S3. Choice of CFR algorithm

The CCA method was used exclusively for the PPEs performed herein. Multiple CFR
methods have now been tested and compared in pseudoproxy contexts (Smerdon, 2012;
Smerdon et al., 2011; Wang et al., 2014; Tingley et al., 2012). Although differences ex-
ist among methods, the current collection of PPEs reported in the literature indicate that
the field performance of available CFR methods, including CCA, is similar. We there-
fore have employed a single CFR method for our purposes, because our focus is on the
effects of differences in the pseudoproxy network design, not on methodological differences
across multiple CFR techniques. All of the pseudoproxy constructions used in this study
will be made available for further testing across different methodological applications, at
http://one.geol.umd.edu/www/data/.
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S4. Random and systematic error in reconstructed fields

S4.1. Root-mean-square error (RMSE)

 

 

a. Temperature Pseudoproxies
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b. Precipitation Pseudoproxies
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c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure S3. Root-mean-square error (RMSE) fields for: (a) Temperature-only, (b)
precipitation-only, (c) precipitation/temperature, and (d) VS-Lite pseudoproxy-based
reconstruction of mean annual temperature.
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S4.2. Mean bias

 

 

a. Temperature Pseudoproxies
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b. Precipitation Pseudoproxies
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c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure S4. Mean bias fields for: (a) Temperature-only, (b) precipitation-only, (c) precip-
itation/temperature, and (d) VS-Lite pseudoproxy-based reconstruction of mean annual
temperature.
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S4.3. Resolved fraction of high-frequency amplitude

 

 

a. Temperature Pseudoproxies
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b. Precipitation Pseudoproxies
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c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure S5. Highpass amplitude ratio (σCFR/σtruth, f>1/20y) fields for: (a) Temperature-only,
(b) precipitation-only, (c) precipitation/temperature, and (d) VS-Lite pseudoproxy-based
reconstruction of mean annual temperature.
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S4.4. Resolved fraction of low-frequency amplitude
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b. Precipitation Pseudoproxies
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c. Temperature + Precipitation Pseudoproxies
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d. VS−Lite Tuned Pseudoproxies
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Figure S6. Lowpass amplitude ratio (σCFR/σtruth, f<1/20y) fields for: (a) Temperature-only,
(b) precipitation-only, (c) precipitation/temperature, and (d) VS-Lite pseudoproxy-based
reconstruction of mean annual temperature.
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S5. Local correlations between pseudoproxies
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f. Correlation of VSL with local T, 15 year means
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g. Correlation of VSL with local P, 15 year means
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Figure S7. a: Correlation of T and T+P pseudoproxies (red: p≤0.05, blue: 0.05<p≤0.10, green:

p>0.10) for SNR=0.5 case, 1721-1855 validation interval, N=135. b: As in (a), except for

correlation of T and VSL pseudoproxies. c: As in (a), except for correlation of VSL and P

pseudoproxies. d: As in (a), except for correlation of T and P pseudoproxies. Panels e,f,g,h : as in

panels a,b,c,d, except for correlations of 15-year averages for the same period (N=9).
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S6. Truncation parameters for CCA-based reconstruc-

tions

PPE dcca dp dT

T 8 21 26
P 4 26 6
T+P 12 30 26
VSL 7 25 10
Table S2. Truncation parameters for CCA-based reconstructions. dcca = number of EOF
patterns of calibrated pseudoproxy-target correlation. dp = number of EOF patterns resolved
in the pseudoproxy data. dT = number of EOF patterns resolved in the calibration target
temperature field, following Smerdon et al. (2011).
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