ALL REAL EIGENVALUES OF SYMMETRIC TENSORS∗
CHUN-FENG CUI†, YU-HONG DAI†, AND JIAWANG NIE‡

Abstract. This paper studies how to compute all real eigenvalues, associated to real eigenvectors, of a symmetric tensor. As is well known, the largest or smallest eigenvalue can be found by solving a polynomial optimization problem, while the other middle ones cannot. We propose a new approach for computing all real eigenvalues sequentially, from the largest to the smallest. It uses Jacobian semidefinite relaxations in polynomial optimization. We show that each eigenvalue can be computed by solving a finite hierarchy of semidefinite relaxations. Numerical experiments are presented to show how to do this.

Key words. symmetric tensors, eigenvalues of tensors, polynomial optimization, Lasserre’s hierarchy, semidefinite relaxation

AMS subject classifications. 15A18, 15A69, 90C22

DOI. 10.1137/140962292

1. Introduction. Let \mathbb{R} be the real field, and let m and n be positive integers. An n-dimensional tensor of order m is an array indexed by integer tuples (i_1, \ldots, i_m) with $1 \leq i_j \leq n$ ($j = 1, \ldots, m$). Let $T^n_m(\mathbb{R}^n)$ denote the space of all such real tensors. A tensor $A \in T^n_m(\mathbb{R}^n)$ is indexed as

$$A = (A_{i_1 \ldots i_m})_{1 \leq i_1, \ldots, i_m \leq n}.$$

The tensor A is symmetric if each entry $A_{i_1 \ldots i_m}$ is invariant with respect to all permutations of (i_1, \ldots, i_m). Let $S^n_m(\mathbb{R}^n)$ be the space of all symmetric tensors in $T^n_m(\mathbb{R}^n)$.

For $A \in S^n_m(\mathbb{R}^n)$, we denote the polynomial

$$A(x) = \sum_{1 \leq i_1 \leq \ldots \leq i_m \leq n} A_{i_1 \ldots i_m} x_{i_1} \ldots x_{i_m}.$$

Clearly, $A(x)$ is a form (i.e., a homogenous polynomial) of degree m in $x := (x_1, \ldots, x_n)$. For a positive integer $k \leq m$, denote

$$x^{[k]} := ((x_1)^k, \ldots, (x_n)^k).$$

Define A^k to be the symmetric tensor in $S^{m-k}(\mathbb{R}^n)$ such that

$$(A^k)_{i_1 \ldots i_{m-k} j_1 \ldots j_k} := \sum_{1 \leq j_1, \ldots, j_k \leq n} A_{i_1 \ldots i_{m-k} j_1 \ldots j_k} x_{j_1} \ldots x_{j_k}.$$

So, A^{m-1} is an n-dimensional vector.

∗Received by the editors March 25, 2014; accepted for publication (in revised form) by T. G. Kolda October 16, 2014; published electronically December 11, 2014.
†State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China (cuichf@lsec.cc.ac.cn, dyh@lsec.cc.ac.cn). The research of the first author was partially supported by a Chinese NSF grant (11331012 and 81173633) and the China National Funds for Distinguished Young Scientists (11125107).
‡Department of Mathematics, University of California, San Diego, La Jolla, CA 92093 (njw@math.ucsd.edu). The research of this author was partially supported by the NSF grants DMS-0844775 and DMS-1417985.

1582

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
An important property of symmetric tensors is their eigenvalues. Eigenvalues of tensors are introduced in Qi [28] and Lim [20]. Unlike matrices, there are various definitions of eigenvalues for tensors. Useful ones include H-eigenvalues, Z-eigenvalues (cf. [28]), and D-eigenvalues (cf. [32]). Eigenvalues of symmetric tensors have applications in signal processing (cf. [30]), diffusion tensor imaging (DTI) (cf. [4, 32, 33]), automatic control (cf. [22]), etc. The tensor eigenvalue problem is an important subject of multilinear algebra. We refer to [14, 21, 29] for introductions to tensors and their applications.

Since there are various definitions of eigenvalues, we here give a unified approach to define them. It is a variation of the approach introduced in [3, 20, 28]. Let \mathbb{C} be the complex field.

Definition 1.1. Let $A \in \mathbb{S}^m(\mathbb{R}^n)$ and $B \in \mathbb{S}^{m'}(\mathbb{R}^n)$ be two symmetric tensors (their orders m, m' are not necessarily equal). A number $\lambda \in \mathbb{C}$ is a B-eigenvalue of A if there exists $u \in \mathbb{C}^n$ such that

$$Au^{m-1} = \lambda Bu^{m'-1}, \quad Bu^{m'} = 1.$$

Such u is called a B-eigenvector associated to λ, and such (λ, u) is called a B-eigenpair of A.

For simplicity, when the tensor B is clear in the context, B-eigenvalues (resp., B-eigenvectors, B-eigenpairs) are just simply called eigenvalues (resp., eigenvectors, eigenpairs). When an eigenvalue λ is real, it may not have a real eigenvector u. An eigenpair (λ, u) is called real if both λ and u are real. Throughout the paper, for convenience, we say that λ is a real eigenvalue if λ is real and it has a real eigenvector. By the largest (resp., smallest) eigenvalue, we mean the largest (resp., smallest) real eigenvalue. In the paper, we only discuss how to compute real eigenvalues.

The following special cases of B-eigenvalues are well known:

- When $m' = m$ and B is the identity tensor (i.e., $Bx^m = x_1^m + \cdots + x_n^m$), the B-eigenvalues are just the H-eigenvalues (cf. [28]). When m is even, a number λ is a real H-eigenvalue of A if there exists $u \in \mathbb{R}^n$ such that

 $$Au^{m-1} = \lambda u^{m-1}, \quad u_1^m + \cdots + u_n^m = 1.$$

Such (λ, u) is called an H-eigenpair.

- When $m' = 2$ and B is such that $Bx^2 = x_1^2 + \cdots + x_n^2$, the B-eigenvalues are just the Z-eigenvalues (cf. [28]). Equivalently, a number λ is a real Z-eigenvalue if there exists $u \in \mathbb{R}^n$ such that

 $$Au^{m-1} = \lambda u, \quad u_1^2 + \cdots + u_n^2 = 1.$$

Such (λ, u) is called a Z-eigenpair.

- Let $D \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. When $m' = 2$ and B is such that $Bx^2 = x^TDx$, the B-eigenvalues are just the D-eigenvalues (cf. [32]). Equivalently, a number λ is a real D-eigenvalue if there exists $u \in \mathbb{R}^n$ such that

 $$Au^{m-1} = \lambda Du, \quad u^TDu = 1.$$

Such (λ, u) is called a D-eigenpair.

The problem of computing eigenvalues of higher order tensors (i.e., $m \geq 3$) is NP-hard (cf. [12]). There exists much recent work for computing the largest (or smallest)

The existing methods are mostly for computing the largest or smallest eigenvalues. However, there are very few methods for computing the other middle eigenvalues. Computing the second or other largest eigenvalues for symmetric tensors is also an important problem in some applications. In DTI [4, 33], the first three largest Z-eigenvalues of a diffusion tensor describe the diffusion coefficients in different directions. As shown by Li, Qi, and Yu [19], the second largest Z-eigenvalue for the characteristic tensor of a hypergraph can be used to get a lower bound for its bipartition width.

The main goal of this paper is to compute all real eigenvalues of a symmetric tensor. For \(A \in S^n(\mathbb{R}^n) \), \(B \in S^{m'}(\mathbb{R}^n) \), it holds that

\[
\nabla A x^m = m A x^{m-1}, \quad \nabla B x^{m'} = m' B x^{m'-1}.
\]

Here, the symbol \(\nabla \) denotes the gradient in \(x \). Thus, (1.1) is equivalent to

\[
\frac{1}{m} \nabla A u^m = \frac{1}{m'} \lambda \nabla B u^{m'}, \quad B u^{m'} = 1.
\]

Then, \((\lambda, u) \) is a \(B \)-eigenpair if and only if \(u \) is a critical point of the problem

\[
(1.2) \quad \max A x^m \quad \text{s.t.} \quad B x^{m'} = 1.
\]

Moreover, the critical value associated to \(u \) is \(\lambda \), because

\[
u^T \nabla A u^m = m A u^m, \quad u^T \nabla B u^{m'} = m' B u^{m'}.
\]

This shows that \((\lambda, u) \) is a \(B \)-eigenpair if and only if \(u \) is a critical point of (1.2) with the critical value \(\lambda \). The polynomial optimization problem (1.2) has finitely many critical values (cf. [26]), including both complex and real ones. That is, every symmetric tensor \(A \) has finitely many complex and real \(B \)-eigenvalues. We order the real \(B \)-eigenvalues monotonically as \(\lambda_1 > \lambda_2 > \cdots > \lambda_K \). For convenience, denote \(\lambda_{\text{max}} := \lambda_1 \) and \(\lambda_{\text{min}} := \lambda_K \).

In this paper, we study how to compute all real eigenvalues. Mathematically, this is equivalent to finding all the real critical values of (1.2), which is a polynomial optimization problem. The semidefinite relaxation method by Lasserre [16] can be applied to get the largest or smallest eigenvalue. To get other middle eigenvalues, we need to use new techniques. Recently, Nie [26] proposed a method for computing the hierarchy of local minimums in polynomial optimization, which uses the Jacobian SDP relaxation method from [24]. We mainly follow the approach in [26] to compute all real eigenvalues sequentially. Indeed, by this approach, each real eigenvalue can be obtained by solving a finite hierarchy of semidefinite relaxations. This is an attractive property that most other numerical methods do not have.

The paper is organized as follows. In section 2, we present some preliminaries in polynomial optimization. In section 3, we propose semidefinite relaxations for computing all real eigenvalues sequentially. In section 4, we report extensive numerical examples to show how to compute all real eigenvalues.
2. Preliminaries. This section reviews some basics in polynomial optimization. We refer to \[5, 17, 18\] for details.

Denote by \(\mathbb{R}[x] := \mathbb{R}[x_1, \ldots, x_n] \) the ring of polynomials in \(x := (x_1, \ldots, x_n) \) with real coefficients. For a degree \(d \), \(\mathbb{R}[x]_d \) denotes the space of all polynomials in \(\mathbb{R}[x] \) whose degrees are at most \(d \). The dimension of the space \(\mathbb{R}[x]_d \) is \(\binom{n+d}{d} \). An ideal of \(\mathbb{R}[x] \) is a subset \(J \) of \(\mathbb{R}[x] \) such that \(J \cdot \mathbb{R}[x] \subseteq J \) and \(J + J \subseteq J \). For a tuple \(\phi := (\phi_1, \ldots, \phi_r) \) of polynomials in \(\mathbb{R}[x] \), the ideal generated by \(\phi \) is the smallest ideal containing all \(\phi_i \), which is the set \(\phi_1 \cdot \mathbb{R}[x] + \cdots + \phi_r \cdot \mathbb{R}[x] \) and is denoted by \(I(\phi) \). The set

\[
I_k(\phi) := \phi_1 \cdot \mathbb{R}[x]_{k-\deg(\phi_1)} + \cdots + \phi_r \cdot \mathbb{R}[x]_{k-\deg(\phi_r)}
\]

is called the \(k \)th truncation of the ideal \(I(\phi) \). Clearly,

\[
\bigcup_{k \in \mathbb{N}} I_k(\phi) = I(\phi).
\]

A polynomial \(\sigma \in \mathbb{R}[x] \) is called a sum of squares (SOS) if there exist \(p_1, \ldots, p_k \in \mathbb{R}[x] \) such that \(\sigma = p_1^2 + \cdots + p_k^2 \). Let \(\Sigma[x] \) be the set of all SOS polynomials and

\[
\Sigma[x]_m := \Sigma[x] \cap \mathbb{R}[x]_m.
\]

Both \(\Sigma[x] \) and \(\Sigma[x]_m \) are convex cones. As is well known, each SOS polynomial is nonnegative everywhere, while the reverse is not necessarily true. We refer to \[34\] for a survey on SOS and nonnegative polynomials. Let \(\psi := (\psi_1, \ldots, \psi_t) \) be a tuple of polynomials in \(\mathbb{R}[x] \). The set

\[
Q_N(\psi) := \Sigma[x]_{2N} + \psi_1 \cdot \Sigma[x]_{2N-\deg(\psi_1)} + \cdots + \psi_t \cdot \Sigma[x]_{2N-\deg(\psi_t)}
\]

is called the \(N \)th truncation of the quadratic module generated by \(\psi \). The union

\[
Q(\psi) := \bigcup_{N \in \mathbb{N}} Q_N(\psi)
\]

is called the quadratic module generated by \(\psi \).

Let \(\mathbb{N} \) be the set of nonnegative integers. For \(x := (x_1, \ldots, x_n) \) and \(\alpha := (\alpha_1, \ldots, \alpha_n) \), denote \(x^\alpha := x_1^{\alpha_1} \cdots x_n^{\alpha_n} \) and \(|\alpha| := \alpha_1 + \cdots + \alpha_n \). For \(d \in \mathbb{N} \), denote

\[
\mathbb{N}^d_\alpha := \{ \alpha \in \mathbb{N}^n : |\alpha| \leq d \}.
\]

The space dual to \(\mathbb{R}[x]_d \) is the set of all truncated multi-sequences (tms) of degree \(d \), which is denoted by \(\mathbb{R}^{\mathbb{N}^d_\alpha} \). A vector \(y \in \mathbb{R}^{\mathbb{N}^d_\alpha} \) is indexed by \(\alpha \in \mathbb{N}^d_\alpha \), i.e.,

\[
y = (y_\alpha)_{\alpha \in \mathbb{N}^d_\alpha}.
\]

Each \(y \in \mathbb{R}^{\mathbb{N}^d_\alpha} \) defines the linear functional \(\mathcal{L}_y \) acting on \(\mathbb{R}[x]_d \) as

\[
\mathcal{L}_y (x^\alpha) = y_\alpha \quad \forall \alpha \in \mathbb{N}^d_\alpha.
\]

Let \(q \in \mathbb{R}[x]_{2k} \). For each \(y \in \mathbb{R}^{\mathbb{N}^d_\alpha} \), the function \(\mathcal{L}_y(qp^2) \) is a quadratic form in \(vec(p) \), the coefficient vector of polynomial \(p \) with \(\deg(qp^2) \leq 2k \). Let \(L_q^{(k)}(y) \) be the symmetric matrix such that

\[
\mathcal{L}_y(qp^2) = vec(p)^T \left(L_q^{(k)}(y) \right) vec(p).
\]
The matrix $L_q^{(k)}(y)$ is called the kth localizing matrix of q generated by y. It is linear in y. For instance, when $n = 2$, $k = 2$, and $q = 1 - x_1^2 - x_2^2$, we have

$$L_{1-x_1^2-x_2^2}^{(2)}(y) = \begin{pmatrix}
 y_{00} - y_{20} - y_{02} & y_{10} - y_{30} - y_{12} & y_{01} - y_{21} - y_{03} \\
 y_{10} - y_{30} - y_{12} & y_{20} - y_{40} - y_{22} & y_{11} - y_{31} - y_{13} \\
 y_{01} - y_{21} - y_{03} & y_{11} - y_{31} - y_{13} & y_{02} - y_{22} - y_{04}
\end{pmatrix}.$$

When $q = 1$ (i.e., the constant one polynomial), $L_1^{(k)}(y)$ is called the kth moment matrix generated by y and is denoted as $M_k(y)$. For instance, when $n = 2$ and $k = 2$,

$$M_2(y) = \begin{pmatrix}
 y_{00} & y_{10} & y_{01} & y_{11} & y_{02} \\
 y_{10} & y_{20} & y_{11} & y_{21} & y_{12} \\
 y_{01} & y_{11} & y_{02} & y_{12} & y_{03} \\
 y_{20} & y_{30} & y_{21} & y_{31} & y_{22} \\
 y_{11} & y_{21} & y_{12} & y_{22} & y_{13} \\
 y_{02} & y_{12} & y_{03} & y_{13} & y_{04}
\end{pmatrix}.$$

3. Semidefinite relaxations for computing all real eigenvalues. In this section, we show how to compute all real eigenvalues sequentially. The Jacobian SDP relaxation technique in [24] is a useful tool for this purpose.

Let $\mathcal{A} \in \mathbb{S}^n(\mathbb{R}^n)$ and $\mathcal{B} \in \mathbb{S}^m(\mathbb{R}^n)$. For convenience, denote $f(x) := \mathcal{A}x^m$ and $g(x) := \mathcal{B}x^m - 1$. Then (1.2) is the same as

$$\begin{align}
\text{max} & \quad f(x) \quad \text{s.t.} \quad g(x) = 0.
\end{align}$$

In the introduction, we have seen that (λ, u) is a \mathcal{B}-eigenpair if and only if λ is a critical value of (3.1), and u is an associated critical point. The problem (3.1) always has finitely many critical values (cf. [26]), including both complex and real ones. So, \mathcal{A} has finitely many complex and real eigenvalues. We order the real eigenvalues monotonically as

$$\lambda_1 > \lambda_2 > \cdots > \lambda_K,$$

where K is the total number of distinct real eigenvalues. Denote

$$\mathcal{W} := \\{ x \in \mathbb{R}^n \quad | \quad \text{rank} [\nabla f(x) \quad \nabla g(x)] \leq 1 \}.$$

Clearly, if (λ, u) is a \mathcal{B}-eigenpair of \mathcal{A}, then $u \in \mathcal{W}$. The description of the set \mathcal{W} does not use the Lagrange multiplier. This is an advantage in computation. Suppose $g(x) = 0$ is a smooth real hypersurface (i.e., $\nabla g(x) \neq 0$ for all real points on $g(x) = 0$). It follows from Definition 1.1 that any $u \in \mathcal{W}$ satisfying $g(u) = 0$ is a \mathcal{B}-eigenvector of \mathcal{A}, associated to the eigenvalue $\lambda = f(u)$. For the frequently used Z-eigenvalues (i.e., $g(x) = x^T x - 1$) and H-eigenvalues (i.e., $g(x) = x_1^m + \cdots + x_n^m - 1$), the hypersurface $g(x) = 0$ is smooth.

A point u belongs to \mathcal{W} if and only if

$$f_{x_i}(u) g_{x_j}(u) - f_{x_j}(u) g_{x_i}(u) = 0 \quad (1 \leq i < j \leq n),$$

where $f_{x_i} = \frac{\partial}{\partial x_i} f(x)$ and $g_{x_i} = \frac{\partial}{\partial x_i} g(x)$. There are totally $\frac{1}{2} n(n - 1)$ equations. Indeed, the number of defining equations for \mathcal{W} can be dropped to $2n - 3$ (cf. [1, Chap. 5]). It suffices to use the following $2n - 3$ equations (cf. [1, 24]):

$$h_r := \sum_{i+j=r+2} (f_{x_i} g_{x_j} - f_{x_j} g_{x_i}) = 0 \quad (r = 1, \ldots, 2n-3).$$
For convenience, let \(h_{2n-2} := g \) and
\[
(3.3) \quad h := (h_1, \ldots, h_{2n-2}).
\]
Clearly, (3.1) is equivalent to the maximization problem
\[
(3.4) \quad \max \ f(x) \quad \text{s.t.} \quad h_r(x) = 0 \ (r = 1, \ldots, 2n - 2).
\]
When the real hypersurface \(g(x) = 0 \) is smooth, a point \(u \) is feasible for (3.4) if and only if \(u \) is a critical point of (3.1), i.e., \(u \) is a \(B \)-eigenvector. This implies that the objective value of (3.4) at any feasible point is a \(B \)-eigenvalue of \(A \). Thus, the objective values on feasible points are \(\lambda_1, \ldots, \lambda_K \).
In the following, we show how to compute all real eigenvalues sequentially. That is, we compute \(\lambda_1 \) first, then \(\lambda_2 \) second, and then \(\lambda_3, \ldots \) if they exist.

3.1. The largest eigenvalue.

The largest eigenvalue \(\lambda_1 \) is the maximum value of problem (3.4). Write the polynomial \(f(x) = Ax^m \) as
\[
f(x) = \sum_{\alpha \in \mathbb{N}^n : |\alpha| = m} f_\alpha x^\alpha.
\]
For a \(y_0 \in \mathbb{R}^{2N} \) with degree \(2N \geq m \), denote
\[
(f, y) := \sum_{\alpha \in \mathbb{N}^n : |\alpha| = m} f_\alpha y_\alpha.
\]
Clearly, \((f, y) \) is a linear function in \(y \). Denote
\[
N_0 := \lceil (m + m' - 2)/2 \rceil.
\]
Lasserre’s hierarchy of semidefinite relaxations (cf. [16]) for solving (3.4) is
\[
(3.5)
\]
\[
\left\{ \begin{array}{l}
\rho^{(1)}_N := \max \ (f, y) \\
\text{s.t.} \quad L^{(N)}_{h_r}(y) = 0 \ (r = 1, \ldots, 2n - 2), \\
y_0 = 1, M_N(y) \succeq 0.
\end{array} \right.
\]
Let \(h \) be the tuple as in (3.3). The dual problem of (3.5) is then
\[
\tilde{\eta}^{(1)}_N := \min \ \gamma \quad \text{s.t.} \quad \gamma - f \in I_{2N}(h) + \Sigma[x]_{2N}.
\]
It can be shown that the optimal values \(\rho^{(1)}_N, \eta^{(1)}_N \) are upper bounds for \(\lambda_1 \). Both sequences \(\{ \rho^{(1)}_N \} \) and \(\{ \eta^{(1)}_N \} \) are monotonically decreasing. That is,
\[
\rho^{(1)}_N \geq \rho^{(1)}_{N+1} \geq \cdots \geq \rho^{(1)}_1 \geq \cdots \geq \lambda_1,
\]
\[
\eta^{(1)}_N \geq \eta^{(1)}_{N+1} \geq \cdots \geq \eta^{(1)}_1 \geq \cdots \geq \lambda_1.
\]
By the weak duality, we also have
\[
\rho^{(1)}_N \leq \eta^{(1)}_N \quad (N = N_0, N_0 + 1, \ldots).
\]
In fact, they both have the nice property of converging to \(\lambda_1 \) in finitely many steps, i.e., \(\rho^{(1)}_N = \eta^{(1)}_N = \lambda_1 \) for all \(N \) large enough.

Theorem 3.1. Let \(A \in \mathbb{S}^m(\mathbb{R}^n) \) and \(B \in \mathbb{S}^{m'}(\mathbb{R}^n) \). Suppose the real hypersurface \(Bx^{m'} = 1 \) is smooth. Let \(\lambda_1 \) be the largest real \(B \)-eigenvalue of \(A \). Then, we have the following properties:
The polynomials

\[h_1, \ldots, h_{2n-3} \]

typically we can get all the

(3.7). If it is satisfied, then we can get

\[\rho_1^{(1)} = \eta_1^{(1)} = \lambda_1 \] for all \(N \) large enough.

(ii) Suppose \(\lambda_1 \) has finitely many real eigenvectors on \(\mathcal{B}x^{m'} = 1 \). If \(N \) is large enough, then, for every optimizer \(y^* \) of (3.5), there exists an integer \(t \leq N \) such that

\[\text{rank } M_{t-N_0}(y^*) = \text{rank } M_t(y^*). \]

Proof. Note that \(-\lambda_1 \) is the minimum value of

\[\min -f(x) \quad \text{s.t.} \quad g(x) = 0. \]

The polynomials \(h_1, \ldots, h_{2n-3} \) are constructed by using Jacobian SDP relaxations in [24]. The relaxations (3.2), (3.4), (3.5)–(3.6) are specializations of the semidefinite relaxations (4.5), (4.6), (4.7)–(4.8) constructed in [26]. Thus, the items (i)–(ii) can be implied by Theorem 4.1 of [26].

In computation, a practical issue is how to determine whether \(\rho_1^{(1)} = \eta_1^{(1)} = \lambda_1 \), because \(\lambda_1 \) is typically unknown. This can be done by checking the rank condition (3.7). If it is satisfied, then we can get

\[\ell := \text{rank } M_t(y^*) \]

distinct feasible points \(u_1, \ldots, u_\ell \) of (3.4), such that each \(u_i \) is a maximizer of (3.4) and \(f(u_i) = \rho_1^{(1)} = \eta_1^{(1)} = \lambda_1 \). They can be computed by the method in Henrion and Lasserre [10]. In other words, if (3.7) holds, then \(\rho_1^{(1)} = \eta_1^{(1)} = \lambda_1 \), and such \(u_1, \ldots, u_\ell \) are the associated \(\mathcal{B} \)-eigenvectors. So, by solving (3.5)–(3.6), we get not only the largest eigenvalue \(\lambda_1 \) but also its \(\mathcal{B} \)-eigenvectors. As shown in Theorem 3.1(ii), if there are finitely many real \(\mathcal{B} \)-eigenvectors (this is the general case; cf. [2]), then (3.7) must be satisfied. So, (3.7) is generally sufficient and necessary for checking convergence of semidefinite relaxations (3.5)–(3.6). The rank condition (3.7) is called flatness. It is a very useful tool for solving truncated moment problems (cf. Curto and Fialkow [6]). The software GloptiPoly 3 (cf. [11]) can be applied to solve the semidefinite relaxations (3.5)–(3.6).

In Theorem 3.1, the relaxations (3.5)–(3.6) are assumed to be solved exactly. However, in practice, they are often solved approximately, due to round-off errors. Suppose \(\tilde{\rho}_N^{(1)}, \tilde{\eta}_N^{(1)} \) are numerically computed optimal values of (3.5)–(3.6), respectively. Then \(\tilde{\rho}_N^{(1)} = \tilde{\eta}_N^{(1)} = \lambda_1 \) may not hold exactly, but they are approximately true. The errors depend on the accuracy of solving (3.5)–(3.6). We refer to Chapter 7 of the book [36] for error analysis in semidefinite programming. When approximately optimal solutions of (3.5)–(3.6) are computed, the rank condition (3.7) will be satisfied approximately. This issue was discussed in [25, Section 3].

Remark 3.2. Suppose the rank condition (3.7) is satisfied. If \(\text{rank } M_N(y^*) \) is maximum among the set of all optimizers of (3.5), then we can get all maximizers of (3.4) (cf. [18, section 6.6]). In such case, we can get all the \(\mathcal{B} \)-eigenvectors associated to \(\lambda_1 \). Therefore, when (3.5)–(3.6) are solved by primal-dual interior point methods, typically we can get all the \(\mathcal{B} \)-eigenvectors associated to \(\lambda_1 \) (cf. [26]). However, if there are infinitely many \(\mathcal{B} \)-eigenvectors lying on \(\mathcal{B}x^{m'} = 1 \), (3.7) is typically not satisfied.

To check the condition (3.7), we need to evaluate the ranks of matrices \(M_{t-N_0}(y^*) \) and \(M_t(y^*) \). In numerical computation, sometimes this would be a very difficult issue because of round-off errors. The rank of a matrix equals to the number of its positive singular values. In practice, we can evaluate the rank as the number of singular
values bigger than a tolerance (say, 10^{-6}). By this way, if there is a sufficiently small perturbation on a matrix, its evaluated rank will not change. We refer to the book [7] for evaluating matrix ranks numerically.

3.2. The second and other largest eigenvalues. Suppose the kth largest eigenvalue λ_k of A is known. We want to compute the $(k+1)$th largest eigenvalue λ_{k+1}, if it exists. Let $\delta \in \mathbb{R}$ be such that

$$0 < \delta < \lambda_k - \lambda_{k+1}. \quad (3.8)$$

Consider the optimization problem

$$\begin{align*}
\max & \quad f(x) \\
\text{s.t.} & \quad h_r(x) = 0 \ (r = 1, \ldots, 2n - 2), \\
& \quad f(x) \leq \lambda_k - \delta.
\end{align*} \quad (3.9)$$

When (3.8) is satisfied, the optimal value of (3.9) is λ_{k+1}. Lasserre’s hierarchy of semidefinite relaxations for solving (3.9) is $(N = N_0, N_0 + 1, \ldots)$

$$\begin{align*}
\rho_N^{(k+1)} := \max & \quad \langle f, y \rangle \\
\text{s.t.} & \quad L_h^{(N)}(y) = 0 \ (r = 1, \ldots, 2n - 2), \\
& \quad y_0 = 1, L_{\lambda_k - \delta - f}(y) \succeq 0, M_N(y) \succeq 0. \quad (3.10)
\end{align*}$$

Its dual problem is then

$$\eta_N^{(k+1)} := \min \gamma \quad \text{s.t.} \quad \gamma - f \in I_{2N}(h) + Q_N(\lambda_k - \delta - f). \quad (3.11)$$

Semidefinite relaxations (3.10)–(3.11) have the following properties.

Theorem 3.3. Suppose the real hypersurface $\mathcal{B}x^{m'} = 1$ is smooth. Let λ_k (resp., λ_{k+1}) be the kth (resp., $(k+1)$th) largest \mathcal{B}-eigenvalue of A. For all δ satisfying (3.8), we have the following properties:

(i) For all N big enough, we have $\rho_N^{(k+1)} = \eta_N^{(k+1)} = \lambda_{k+1}$.

(ii) Suppose λ_{k+1} has finitely many eigenvectors on $\mathcal{B}x^{m'} = 1$. If N is large enough, then for every optimizer y^* of (3.10), there exists an integer $t \leq N$ such that (3.7) holds.

Proof. Note that $-\lambda_k$ is the kth smallest critical value of

$$\min \quad -f(x) \quad \text{s.t.} \quad g(x) = 0.$$

The polynomials h_1, \ldots, h_{2n-3} are constructed by using Jacobian SDP relaxations in [24]. The semidefinite relaxations (3.9)–(3.11) are specializations of (4.9)–(4.11) in [26]. Thus, the items (i)–(ii) can be obtained by Theorem 4.3 of [26].

Remark 3.4. The finite convergence of $\rho_N^{(k+1)}$ and $\eta_N^{(k+1)}$ to λ_{k+1} can be identified by checking the rank condition (3.7). If it is satisfied, we can get t \mathcal{B}-eigenvectors associated to λ_{k+1}. When the semidefinite relaxations (3.10) and (3.11) are solved by primal-dual interior point methods, typically we can get all \mathcal{B}-eigenvectors, provided there are finitely many ones. The rank condition (3.7) is generally sufficient and necessary for checking the finite convergence of the sequences $\{\rho_N^{(k+1)}\}$ and $\{\eta_N^{(k+1)}\}$. We refer to Remark 3.2. We also refer to the discussions before and after Remark 3.2, about the numerical issues related to (3.7), (3.10), and (3.11).
In practice, we usually do not know whether \(\lambda_{k+1} \) exists. Even if it exists, we do not know how small \(\delta \) should be chosen to satisfy (3.8). Interestingly, this issue can be fixed by solving the optimization problem

\[
(3.12) \quad \begin{cases}
\chi_k := \min \ f(x) \\
\text{s.t.} \quad h_r(x) = 0 \ (r = 1, \ldots, 2n - 2), \\
\quad f(x) \geq \lambda_k - \delta.
\end{cases}
\]

The following proposition is useful.

Proposition 3.5. Suppose the real hypersurface \(Bx^{n'} = 1 \) is smooth. Let \(\lambda_k \) (resp., \(\lambda_{\min} \)) be the \(k \)th largest (resp., smallest) \(B \)-eigenvalue of \(A \). For all \(\delta > 0 \), we have the following properties:

(i) The relaxation (3.10) is infeasible for some \(N \) if and only if \(\lambda_k - \delta < \lambda_{\min} \).

(ii) If \(\chi_k = \lambda_k \) and \(\lambda_{k+1} \) exists, then \(\lambda_{k+1} < \lambda_k - \delta \), i.e., (3.8) holds.

(iii) If \(\chi_k = \lambda_k \) and (3.10) is infeasible for some \(N \), then \(\lambda_k = \lambda_{\min} \) and \(\lambda_{k+1} \) does not exist.

Proof. (i) This can be implied by Theorem 4.3(i) of [26].

(ii) Clearly, \(\chi_k \) is the smallest \(B \)-eigenvalue greater than or equal to \(\lambda_k - \delta \). If \(\lambda_{k+1} \) exists and \(\chi_k = \lambda_k \), we must have \(\lambda_{k+1} < \lambda_k - \delta \).

(iii) From (i), we know \(\lambda_k - \delta < \lambda_{\min} \). If otherwise \(\lambda_{\min} < \lambda_k \), then \(\lambda_{k+1} \) exists and \(\lambda_{k+1} < \lambda_k - \delta \) by (ii). This results in the contradiction \(\lambda_{k+1} < \lambda_{\min} \). So, \(\lambda_{\min} = \lambda_k \).

The problem (3.12) is also a polynomial optimization problem. Similar semidefinite relaxations like (3.10)–(3.11) can be constructed to solve it. The hierarchy of such relaxations can also be shown to have finite convergence (cf. [26]) by similar arguments. Thus, the optimal value \(\chi_k \) of (3.12) can be computed by solving its semidefinite relaxations. For \(\delta > 0 \) sufficiently small, we must have \(\chi_k = \lambda_k \), no matter if \(\lambda_{k+1} \) exists or not. This is because \(\chi_k \) is the smallest \(B \)-eigenvalue greater than or equal to \(\lambda_k - \delta \).

The existence of \(\lambda_{k+1} \) and the relation (3.8) can be checked as follows. First, we choose a small value (say, 0.05) for \(\delta \) and then solve (3.12). If \(\chi_k < \lambda_k \), we decrease the value \(\delta \) as \(\delta := \delta/5 \) and solve (3.12) again. Repeat this process until we get \(\chi_k = \lambda_k \). (This process must stop when \(\delta > 0 \) is sufficiently small.) After \(\chi_k = \lambda_k \) is reached, there are only two possibilities: (1) If \(\lambda_{k+1} \) does not exist, then \(\lambda_k = \lambda_{\min} \). By Proposition 3.5(i), the relaxation (3.10) must be infeasible for some \(N \). This then confirms the nonexistence of \(\lambda_{k+1} \) by Proposition 3.5(iii). (2) If \(\lambda_{k+1} \) exists, then \(\lambda_{k+1} < \lambda_k - \delta \), by Proposition 3.5(ii). So, (3.8) is satisfied. Then, by Theorem 3.3(i), we have \(\rho_{\lambda_{k+1}}^{(k+1)} = \lambda_{k+1} \) for \(N \) sufficiently large. In summary, if \(\lambda_{k+1} \) does not exist, we can get a certificate for that; if it exists, we can get \(\lambda_{k+1} \) by solving the relaxation (3.10).

We would like to point out that some variations of eigenvalue problems can also be solved by using similar semidefinite relaxations. The largest real eigenvalue in an interval \([a, b]\) is the optimal value of the problem

\[
(3.13) \quad \begin{cases}
\max \ f(x) \\
\text{s.t.} \quad h_r(x) = 0 \ (r = 1, \ldots, 2n - 2), \\
\quad a \leq f(x) \leq b.
\end{cases}
\]

If, in advance, we know there exists an eigenvector \(u \) for \(\lambda_{k+1} \) lying in some region, say, defined by some polynomial inequalities \(p_1(x) \geq 0, \ldots, p_s(x) \geq 0 \), then we can get such \(u \) by solving the optimization problem.
0. Choose a small positive value δ_0 (e.g., 0.05). Let $k = 1$.

Step 1. Solve the hierarchy of (3.5) and get the largest eigenvalue λ_1.

Step 2. Let $\delta = \delta_0$ and solve the optimal value χ_k of (3.12). If $\chi_k = \lambda_k$, then go to Step 3; if $\chi_k < \lambda_k$, let $\delta := \min(\delta/5, \lambda_k - \chi_k)$, and compute χ_k. Repeat this process until $\chi_k = \lambda_k$.

Step 3. Solve the hierarchy of (3.10). If (3.10) is infeasible for some order N, then λ_k is the smallest eigenvalue and stop. Otherwise, we can get the next largest eigenvalue λ_{k+1}.

Step 4. Let $k := k + 1$ and go to Step 2.

In Step 2, if $\chi_k < \lambda_k$, we should expect $\delta < \lambda_k - \chi_k$. This is why we update δ as the minimum of $\delta/5$ and $\lambda_k - \chi_k$.

4. Numerical experiments. In this section, we report numerical experiments for showing how to compute real eigenvalues. The computation is implemented in a Thinkpad W520 laptop with an Intel dual core CPU at 2.20 GHz \times 2 and 8 GB of RAM, in a Windows 7 operating system. We use the software MATLAB 2013a and GloptiPoly 3 [11] to solve the semidefinite relaxations for polynomial optimization problems. In the display of numerical results, we show only four decimal digits.

By the definition of B-eigenvalues as in (1.1), (λ, u) is an eigenpair if and only if $((-1)^{m-m'}\lambda, -u)$ is an eigenpair. For H-eigenvalues $(m = m')$, the H-eigenvectors always appear in \pm pairs; so we list only H-eigenvectors u satisfying $\Sigma_i u_i \geq 0$. For Z-eigenvalues $(m' = 2)$, when m is even, the Z-eigenvectors appear in \pm pairs, and we list only those u satisfying $\Sigma_i u_i \geq 0$; when m is odd, (λ, u) is a Z-eigenpair if and only if $(-\lambda, -u)$ is a Z-eigenpair, and they appear in \pm pairs.

If the rank condition (3.7) is satisfied, then we can get the B-eigenvalue λ_k and $\ell := \text{rank } M_k(y^*)$ B-eigenvectors associated to λ_k. When primal-dual interior point methods are applied to solve the semidefinite relaxations and (3.7) holds, generally all B-eigenvectors associated to λ_k can be obtained. We refer to Remarks 3.2 and 3.4. In our numerical experiments, the SDP solver SeDuMi [35] is called by the software GloptiPoly 3. The solver SeDuMi is based on primal-dual interior point methods. So, when the rank condition (3.7) is satisfied, we typically get all B-eigenvectors of λ_k. In such cases, the real geometric multiplicities of computed eigenvalues are also
known. In the display of our numerical results, we use the notation $\lambda^{(\ell)}$ to mean that ℓ distinct B-eigenvectors (modulo scaling) are found for the eigenvalue λ.

When λ_k has infinitely many B-eigenvectors on $Bx^{m'} = 1$, the rank condition (3.7) is typically not satisfied. To the best of the authors’ knowledge, for such cases, it is a theoretically open question to check the convergence of (3.5)–(3.6) and (3.10)–(3.11), although they are proved to have finite convergence in Theorems 3.1 and 3.3. However, in practice, this issue can be fixed heuristically as follows. The sequence $\{\rho_N^{(\ell)}\}$ always has finite convergence to λ_k. After an approximate convergence of $\rho_N^{(\ell)}$ is observed, we can use such $\rho_N^{(\ell)}$ as an approximation of λ_k. Let $\epsilon > 0$ be small such that λ_k is a unique B-eigenvalue of A in the interval $[\lambda_k - \epsilon, \lambda_k + \epsilon]$. Choose a generic vector $c \in \mathbb{R}^n$ and then solve the problem

$$\begin{align*}
\min \quad & c^T x \\
\text{s.t.} \quad & h_r(x) = 0 \quad (r = 1, \ldots, 2n - 2), \\
& \lambda_k - \epsilon \leq Ax^{m} \leq \lambda_k + \epsilon.
\end{align*}$$

(4.1)

When c is generic, (4.1) has a unique minimizer, which is a B-eigenvector associated to λ_k. We can construct semidefinite relaxations, like (3.10)–(3.11), for solving (4.1). A B-eigenvector can be found by solving the semidefinite relaxations (cf. [25, section 3]). In practice, a generic c can be chosen as a random vector in \mathbb{R}^n. In MATLAB, we can set $c = \text{randn}(n, 1)$. A small enough ϵ can be chosen as follows. We first assign a small value to ϵ, say, 0.05. After solving (4.1), we are done if a B-eigenvector associated to λ_k is found; otherwise, update $\epsilon := \epsilon/5$ and solve (4.1) again. Repeat this process, until a B-eigenvector u associated to λ_k is found. Once u is obtained, we check the equation $Au^{m-1} = \lambda_k Bu^{m-1}$. If it is satisfied, then (λ_k, u) is confirmed to be an eigenpair. In our examples, we use the superscript * to mean that an eigenvector is computed by solving (4.1).

Example 4.1 (see [28]). Consider the tensor $A \in S^4(\mathbb{R}^3)$ such that

$$Ax^4 = x_1^4 + 2x_2^4 + 3x_3^4.$$

It is a diagonal tensor (i.e., its entries $A_{i_1i_2i_3}$ are all zeros except for $i_1 = i_2 = i_3$). Its Z-eigenvalues were computed by Qi [28, Proposition 9]. For this tensor, the optimization problem (3.4) is

$$\begin{align*}
\max \quad & x_1^4 + 2x_2^4 + 3x_3^4 \\
\text{s.t.} \quad & 2x_1x_3^3 - x_2x_1^3 = 0, \quad 3x_1^3x_2 - x_3^4 = 0, \quad 3x_2^3x_3 - 2x_3x_2^3 = 0, \\
& x_1^2 + x_2^2 + x_3^2 = 1.
\end{align*}$$

Using Algorithm 3.6, we get all the real Z-eigenvalues and Z-eigenvectors, which are shown in Table 4.1. The computation takes about 9 seconds.

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_k</td>
<td>3.0000</td>
<td>2.0000</td>
<td>1.2000(2)</td>
<td>1.0000</td>
<td>0.7500(2)</td>
<td>0.6667(2)</td>
<td>0.5455(3)</td>
</tr>
<tr>
<td>u_k</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.8660</td>
<td>0.8165</td>
<td>±0.7386</td>
</tr>
<tr>
<td></td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.7746</td>
<td>0.0000</td>
<td>0.0000</td>
<td>±0.5773</td>
<td>±0.5222</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td>0.0000</td>
<td>±0.6324</td>
<td>0.0000</td>
<td>±0.5000</td>
<td>0.0000</td>
<td>±0.4264</td>
</tr>
</tbody>
</table>

Table 4.1

Z-eigenpairs of the tensor in Example 4.1.
For simplicity, the Z-eigenvectors are not shown. The Z-eigenvalues. It takes about 400 seconds. The nonnegative Z-eigenvalues are $\lambda = 3$ and $\lambda = 1$. When $a < \frac{1}{3}$ or $a > 1$, A has another double Z-eigenvalue $3(9a^3 - 6a^2 - 3a + 2)$. For simplicity, the eigenvectors are not shown. Using Algorithm 3.6, we get all 30 real Z-eigenvalues. It takes about 400 seconds. The nonnegative Z-eigenvalues are

4.0000, 0.0000, 2.0000, 1.2163, 1.0000, 0.9611, 0.8543, 0.6057, 0.5550, 0.5402, 0.4805, 0.3887, 0.3466, 0.3261, 0.2518.

For simplicity, the Z-eigenvalues are not shown.

Example 4.3 (see [28, Example 3]). Consider the tensor $A \in S_4(\mathbb{R}^3)$ such that

$$Ax^4 = 2x_1^4 + 3x_2^4 + 5x_3^4 + 4ax_2^2x_3x_3,$$

where a is a parameter. The polynomial optimization problem (3.4) is

$$\begin{align*}
& \text{max} \quad 2x_1^4 + 3x_2^4 + 5x_3^4 + 4ax_2^2x_3x_3 \\
& \text{s.t.} \quad x_1^{p-1}(3x_2^3 + ax_3^2x_3) - x_2^{p-1}(2x_3^4 + 2ax_1x_2x_3) = 0, \\
& \quad x_1^{p-1}(5x_3^3 + ax_1^2x_2) - x_2^{p-1}(2x_3^4 + 2ax_1x_2x_3) = 0, \\
& \quad x_2^{p-1}(5x_3^3 + ax_1^2x_2) - x_3^{p-1}(3x_3^4 + ax_1^2x_3) = 0, \\
& \quad x_1^p + x_2^p + x_3^p = 1,
\end{align*}$$

where $p = 2$ for Z-eigenvalues and $p = 4$ for H-eigenvalues. Using Algorithm 3.6, we get all the real Z and H eigenvalues, which are shown in Table 4.2. For each value of a, it takes a couple of seconds (from 5 to 20). For simplicity, the eigenvectors are not shown.

Example 4.4 (see [28, Example 4]). Let $A \in S_4(\mathbb{R}^3)$ be the tensor such that

$$Ax^4 = 3x_1^4 + x_2^4 + 6ax_1^2x_2^2,$$

where a is a parameter. As shown in [28], this tensor always has two Z-eigenvalues $\lambda = 3, \lambda = 1$. When $a < \frac{1}{3}$ or $a > 1$, A has another double Z-eigenvalue $\frac{3(9a^3 - 6a^2 - 3a + 2)}{2(3a - 2)^2}$.

Table 4.2

Z-eigenvalues and H-eigenvalues of the tensor in Example 4.3.

<table>
<thead>
<tr>
<th>a</th>
<th>Z-eigenvalues</th>
<th>H-eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.8750(2) 1.4286(2) 1.2000(2) 0.9679(2)</td>
<td>1.8750(2) 1.4286(2) 1.2000(2) 0.9679(2)</td>
</tr>
<tr>
<td>0.25</td>
<td>1.8750(2) 1.4412(2) 1.2150(2) 1.0881(2)</td>
<td>1.8750(2) 1.4412(2) 1.2150(2) 1.0881(2)</td>
</tr>
<tr>
<td>0.5</td>
<td>1.8750(2) 1.4783(2) 1.2593(2) 1.2069(2)</td>
<td>1.8750(2) 1.4783(2) 1.2593(2) 1.2069(2)</td>
</tr>
<tr>
<td>1</td>
<td>1.8750(2) 1.6133(2) 0.4787(2)</td>
<td>1.8750(2) 1.6133(2) 0.4787(2)</td>
</tr>
<tr>
<td>3</td>
<td>1.8750(2) 0.5126(2)</td>
<td>1.8750(2) 0.5126(2)</td>
</tr>
</tbody>
</table>

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
For some values of a, the Z-eigenvalues are shown in Table 4.3. For each case of a, the computation takes about 1 second.

Example 4.5 (see [15, Example 3.5], [27, Example 3.4]). Consider the tensor $A \in S^4(\mathbb{R}^3)$ such that

$$A_{1111} = 0.2883, \quad A_{1112} = -0.0031, \quad A_{1113} = 0.1973, \quad A_{1122} = -0.2485, \quad A_{1123} = -0.2939, \quad A_{1222} = 0.3847, \quad A_{1223} = 0.2972, \quad A_{1233} = 0.1862, \quad A_{2222} = 0.1341, \quad A_{2223} = -0.3420, \quad A_{2333} = 0.2127, \quad A_{3333} = 0.2727, \quad A_{3333} = -0.3054.$$

Using Algorithm 3.6, we get all the real Z-eigenvalues and Z-eigenvectors. They are shown in Table 4.4. The computation takes about 9 seconds.

Example 4.6 (see [31, Example 9.1]). Consider the tensor $A \in S^4(\mathbb{R}^6)$ such that

$$Ax^3 = x_1^3 + \cdots + x_6^3 + 30x_1^2x_2 + \cdots + 30x_5^2x_6.$$

It is a cubic tensor of dimension six. Its Z-eigenvalues appear in \pm pairs. In total, there are 19 nonnegative Z-eigenvalues:

It takes about 10,870 seconds to compute them. For simplicity, the Z-eigenvectors are not shown.

Characteristic tensors of hypergraphs have important applications, as shown in Li, Qi, and Yu [19]. The second largest Z-eigenvalue can be used to get a lower bound for the bipartition width. The following is such an example.

Example 4.7 (see [19, Example 6.4]). Consider the tensor $A \in S^4(\mathbb{R}^6)$ such that

$$-Ax^4 = (x_1 - x_2)^4 + (x_1 - x_3)^4 + (x_1 - x_4)^4 + (x_1 - x_5)^4 + (x_1 - x_6)^4 + (x_2 - x_3)^4 + (x_2 - x_4)^4 + (x_2 - x_5)^4 + (x_2 - x_6)^4 + (x_3 - x_4)^4 + (x_3 - x_5)^4 + (x_3 - x_6)^4 + (x_4 - x_5)^4 + (x_4 - x_6)^4 + (x_5 - x_6)^4.$$

The polynomial Ax^4 is symmetric in x. Every permutation of a Z-eigenvector is also a Z-eigenvector. So, we can add extra conditions $x_1 \geq x_2 \geq \cdots \geq x_6$ to (3.4) and (3.9), while not changing eigenvalues. Then we solve the corresponding semidefinite relaxations. The tensor A has five real Z-eigenvalues, which are respectively

$$\lambda_1 = 0.0000, \quad \lambda_2 = -4.0000, \quad \lambda_3 = -4.5000, \quad \lambda_4 = -6.0000, \quad \lambda_5 = -7.2000.$$
The Z-eigenvectors, whose entries are ordered monotonically decreasing, are shown in Table 4.5. It takes about 280 seconds to get them. In the computation of λ_3, the rank condition (3.7) is not satisfied. We get one of its Z-eigenvectors by solving (4.1).

Example 4.8 (see [37, Example 2]). Consider the tensor $A \in \mathbb{S}^4(\mathbb{R}^5)$ such that

$$Ax^4 = (x_1 + x_2 + x_3 + x_4)^4 + (x_2 + x_3 + x_4 + x_5)^4.$$

Using Algorithm 3.6, we get all three real Z-eigenvalues of this tensor, which are respectively

$$\lambda_1 = 24.5000, \quad \lambda_2 = 0.5000, \quad \lambda_3 = 0.0000.$$

It takes about 320 seconds to get them. The Z-eigenvectors are shown in Table 4.6. There are infinitely many Z-eigenvectors for λ_3. In the computation of λ_3, the rank condition (3.7) is not satisfied. So, we solve (4.1) and get one of its Z-eigenvectors.

Example 4.9 (see [2, Example 5.7]). Consider the cubic tensor $A \in \mathbb{S}^3(\mathbb{R}^3)$ such that

$$Ax^3 = 2x_1^3 + 3x_1x_2^2 + 3x_1x_3^2.$$

Using Algorithm 3.6 we get two real Z-eigenvalues, which are $\lambda_1 = 2$ and $\lambda_2 = -2$. Their Z-eigenvectors are $(1, 0, 0)$ and $(-1, 0, 0)$, respectively. It takes about 1 second to compute them.

Example 4.10 (see [2, Example 5.8]). Consider the tensor $A \in \mathbb{S}^6(\mathbb{R}^3)$ such that

$$Ax^6 = x_1^4x_2^2 + x_1^2x_2^4 + x_3^6 - 3x_1^2x_2^2x_3^2,$$

which is the Motzkin polynomial. Since Ax^6 has only even powers in each of x_1, x_2, x_3, we can add the extra conditions $x_1 \geq 0, x_2 \geq 0, x_3 \geq 0$ to (3.4) and (3.9), while not changing eigenvalues. Then we solve the corresponding semidefinite relaxations. The tensor A has three real H-eigenvalues. Using Algorithm 3.6, we get all of them, which are respectively

$$\lambda_1 = 1.0000, \quad \lambda_2 = 0.0555, \quad \lambda_3 = 0.0000.$$

The H-eigenvectors are shown in Table 4.7. It takes about 30 seconds.

Table 4.5

<table>
<thead>
<tr>
<th>k</th>
<th>λ_k</th>
<th>u_k^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>(0.4082 0.4082 0.4082 0.4082 0.4082 0.4082)</td>
</tr>
<tr>
<td>2</td>
<td>-4.0000(-20)</td>
<td>(0.4082 0.4082 0.4082 -0.4082 -0.4082 -0.4082)</td>
</tr>
<tr>
<td>3</td>
<td>-4.5000(-1)</td>
<td>(0.2887 0.2887 0.2887 0.2887 -0.5774 -0.5774)</td>
</tr>
<tr>
<td>4</td>
<td>-6.0000(-15)</td>
<td>(0.7071 0.0000 0.0000 0.0000 0.0000 -0.7071)</td>
</tr>
<tr>
<td>5</td>
<td>-7.2000(-6)</td>
<td>(0.1826 0.1826 0.1826 0.1826 0.1826 -0.9129)</td>
</tr>
</tbody>
</table>

Table 4.6

<table>
<thead>
<tr>
<th>k</th>
<th>λ_k</th>
<th>u_k^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.5000</td>
<td>(0.2673 0.5345 0.5345 0.5345 0.5263)</td>
</tr>
<tr>
<td>2</td>
<td>0.5000</td>
<td>(0.7071 0.0000 0.0000 0.0000 -0.7071)</td>
</tr>
<tr>
<td>3</td>
<td>0.0000(-1)</td>
<td>(0.5253 0.3021 -0.4781 -0.3472 0.5318)</td>
</tr>
</tbody>
</table>
The Z-eigenvectors are shown in Table 4.8. The Z-eigenvector of A by solving (4.1) is just the negative of that of A^T. In the computation of A, the rank condition (3.7) is not satisfied. We get a Z-eigenvector for A by solving (4.1).

Example 4.12 (see [27]). Consider the tensor $A \in \mathbb{S}^3(\mathbb{R}^n)$ such that

$$A_{ijk} = (-1)^i \frac{(-1)^j}{j} + (-1)^k \frac{(-1)^k}{k} \quad (1 \leq i, j, k \leq n).$$

For the case $n = 5$, we get all the real Z-eigenvalues, which are respectively

$$\lambda_1 = 1.0000, \lambda_2 = 0.0000, \lambda_3 = -1.0000, \lambda_4 = 0.0000, \lambda_5 = -1.0000.$$

The computation takes about 170 seconds. The Z-eigenvectors are displayed in Table 4.10. It takes about 170 seconds to compute them. In the computation of A, the rank condition (3.7) is not satisfied. We get a Z-eigenvector for A by solving (4.1).

Example 4.11 (see [27, Example 3.5]). Consider the tensor $A \in \mathbb{S}^3(\mathbb{R}^n)$ such that

$$A_{ijk} = \sin(i_1 + i_2 + i_3 + i_4) \quad (1 \leq i_1, i_2, i_3, i_4 \leq n).$$

For the case $n = 5$, we get all the real Z-eigenvalues, which are respectively

$$\lambda_1 = 9.9779, \lambda_2 = 4.2876, \lambda_3 = 0.0000, \lambda_4 = -4.2876, \lambda_5 = -9.9779.$$

The computation takes about 150 seconds. The Z-eigenvectors of $\lambda_1, \lambda_2, \lambda_3$ are shown in Table 4.8. The Z-eigenvector of λ_1 (resp., λ_3) is just the negative of that of λ_2 (resp., λ_1). In the computation of λ_3, the rank condition (3.7) is not satisfied. We get a Z-eigenvector for λ_3 by solving (4.1).

<table>
<thead>
<tr>
<th>k</th>
<th>λ_k</th>
<th>v_k^T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000 (7)</td>
<td>(0.0000 0.0000 1.0000)</td>
</tr>
<tr>
<td>2</td>
<td>0.0555 (8)</td>
<td>(0.4887 ±0.9823 ±0.6735)</td>
</tr>
<tr>
<td>3</td>
<td>0.0000 (6)</td>
<td>(1.0000 0.0000 0.0000)</td>
</tr>
</tbody>
</table>

The Z-eigenvectors of the tensor in Example 4.11.

Example 4.13. Consider the tensor $A \in \mathbb{S}^4(\mathbb{R}^n)$ such that

$$A_{i_1...i_4} = \tan(i_1) + \tan(i_2) + \tan(i_3) + \tan(i_4) \quad (1 \leq i_1, i_2, i_3, i_4 \leq n).$$

For the case $n = 5$, we get all the real Z-eigenvalues which are respectively

$$\lambda_1 = 34.5304, \lambda_2 = 0.0000, \lambda_3 = -101.1994.$$
For the case $n = 4$, we get all the real Z-eigenvalues which are respectively

$$\lambda_1 = 132.3070, \lambda_2 = 0.7074, \lambda_3 = 0.0000, \lambda_4 = -0.7074, \lambda_5 = -132.3070.$$

The Z-eigenvectors of $\lambda_1, \lambda_2, \lambda_3$ are shown in Table 4.11. The Z-eigenvector of λ_4 (resp., λ_5) is just the negative of that of λ_2 (resp., λ_1). It takes about 420 seconds to compute them. In the computation of λ_3, the rank condition (3.7) is not satisfied. We get a Z-eigenvector for λ_3 by solving (4.1).

Example 4.15 (random tensors). An interesting question is to determine the number of real Z-eigenvalues for the symmetric tensors. Cartwright and Sturmfels [2, Theorem 5.5] showed that every symmetric tensor A of order m and dimension n has at most

$$M(m, n) := \frac{(m - 1)^n - 1}{m - 2}$$

distinct complex Z-eigenvalues. In [2], (λ, u) and $((-1)^m\lambda, -u)$ are considered to be the same eigenpair. To be consistent with [2], for odd ordered tensors, we here only count their nonnegative Z-eigenvalues. Furthermore, they also showed that when A is generic, A has exactly $M(m, n)$ distinct complex Z-eigenvalues. Clearly, $M(m, n)$ is an upper bound for the number of real Z-eigenvalues. But it might not be sharp for generic tensors. In this example, we explore possibilities of distributions of the numbers of real Z-eigenvalues. For each (m, n), we generate 50 symmetric tensors randomly. Each symmetric tensor is generated as the symmetrization of a random nonsymmetric tensor $\text{randn}(i_1, \ldots, i_m)$ in MATLAB. The number of their real Z-eigenvalues is shown in Table 4.12. The notation $k^{(\mu)}$ means that there are μ instances for which the number of real Z-eigenvalues equals to k. The table confirms that $M(m, n)$ is an upper bound for the numbers of real Z-eigenvalues. Moreover, the
Numbers of real \(Z\)-eigenvalues of random symmetric tensors.

<table>
<thead>
<tr>
<th>(m,n)</th>
<th>(M_{m,n})</th>
<th>Numbers of real (Z)-eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3,5)</td>
<td>31</td>
<td>(7, 9^{1}, 11^{1}, 13^{4}, 15^{6}, 17^{2}, 19^{3}, 21^{1}, 23)</td>
</tr>
<tr>
<td>(3,4)</td>
<td>15</td>
<td>(3^{4}, 5^{8}, 7^{8}, 9^{11}, 11^{17}, 13)</td>
</tr>
<tr>
<td>(3,3)</td>
<td>7</td>
<td>(1^{4}, 3^{17}, 5^{10}, 7^{14})</td>
</tr>
<tr>
<td>(4,4)</td>
<td>40</td>
<td>(8^{2}, 10^{4}, 12^{8}, 14^{6}, 16^{8}, 18^{12}, 20^{6}, 22^{14}, 24, 28)</td>
</tr>
<tr>
<td>(4,3)</td>
<td>13</td>
<td>(3^{13}, 5^{5}, 7^{7}, 9^{8}, 11^{1})</td>
</tr>
<tr>
<td>(5,4)</td>
<td>85</td>
<td>(13, 15^{4}, 17^{8}, 19^{10}, 21^{8}, 23^{6}, 25^{7}, 27^{9}, 31^{2}, 33)</td>
</tr>
<tr>
<td>(5,3)</td>
<td>21</td>
<td>(5^{2}, 7^{9}, 9^{13}, 11^{17}, 13^{17}, 15^{1})</td>
</tr>
</tbody>
</table>

numbers of real \(Z\)-eigenvalues are not evenly distributed. We do not know the reason for such distributions.

Theoretically, Algorithm 3.6 is able to compute all real eigenvalues for all symmetric tensors, provided that the computer has sufficient capacity. In practice, the sizes of symmetric tensors, for which the eigenvalues can be computed by Algorithm 3.6, depend on the computer memory and the relaxation order \(N\). The length of the variable \(y\) in (3.5) and (3.10) is \(\binom{n+2N}{2N}\). It grows fast in the order \(N\). In our computational experiences, for general tensors, a small order \(N\) is often enough. This fact was observed for random tensors in Example 4.15. However, for some special tensors, a big order \(N\) might be required. For such cases, it is often very hard to compute all real eigenvalues.

A different approach for computing all real eigenvalues is based on solving the system (1.1) directly for its real solutions. This can be done by using the numerical solver \texttt{NSolve} provided by Mathematica. Generally, \texttt{NSolve} can solve relatively small problems. The following is such an example.

Example 4.16. Consider the symmetric tensor \(A \in S^4(\mathbb{R}^n)\) such that
\[
Ax^4 = (x_1 - x_2)^4 + \cdots + (x_1 - x_n)^4 + (x_2 - x_3)^4 + \cdots + (x_2 - x_n)^4 \\
+ \cdots + (x_{n-1} - x_n)^4.
\]
Like in Example 4.7, we can add extra conditions \(x_1 \geq x_2 \geq \cdots \geq x_n\) to (3.4) and (3.9), while not changing eigenvalues. We compute its real \(Z\)-eigenvalues. The computational results are shown in Table 4.13. For the case \(n = 4\), Algorithm 3.6 takes about 3 seconds, while \texttt{NSolve} takes about 19 seconds. They both get all the real \(Z\)-eigenvalues correctly. For the case \(n = 5\), Algorithm 3.6 gets all the real \(Z\)-eigenvalues in about 274 seconds, while \texttt{NSolve} can’t get answers in 5 hours (we terminated the computation after 5 hours). In Table 4.13, "-" means that no computational results are returned. We can also get all real eigenvalues for \(n = 6, 7\). For the bigger \(n = 8, 9, 10\), we can get the first three largest \(Z\)-eigenvalues, but the other smaller \(Z\)-eigenvalues cannot be obtained. This is because, for such cases, we need to use the relaxation order \(N = 4\), which causes the computer to run out of memory. For \(n = 8, 9, 10\), the reported time is only for the first three biggest \(Z\)-eigenvalues. For the values of \(n\) bigger than 10, the computer runs out of memory and we cannot get the eigenvalues.

In Algorithm 3.6, if the real eigenvalues are not separated well, then the positive number \(\delta > 0\) need to be chosen very small. We consider the following example, thanks to an anonymous referee.

Example 4.17. Consider the tensor \(A \in S^3(\mathbb{R}^2)\) such that
\[
A_{111} = 1, \quad A_{222} = 1 + 10^{-6},
\]
Table 4.13
Z-eigenpairs of the tensor in Example 4.16.

<table>
<thead>
<tr>
<th>n</th>
<th>Alg. 3.6</th>
<th>Alg. 3.6</th>
<th>Z-eigenvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.6</td>
<td>3.6</td>
<td>5.3333 5.0000 4.0000 0.0000</td>
</tr>
<tr>
<td>5</td>
<td>27.5</td>
<td>19.3</td>
<td>6.2500 5.5000 4.2500 4.1667 0.0000</td>
</tr>
<tr>
<td>6</td>
<td>280.2</td>
<td>120.5</td>
<td>7.2000 6.0000 4.5000 4.0000 0.0000</td>
</tr>
<tr>
<td>7</td>
<td>9565.6</td>
<td>197.3</td>
<td>8.1667(2) 6.5000 4.9000(2) 4.8846(2) 4.7500</td>
</tr>
<tr>
<td>8</td>
<td>938.2</td>
<td>197.3</td>
<td>9.1429(2) 7.0000 5.3333(2) – –</td>
</tr>
<tr>
<td>9</td>
<td>4173.8</td>
<td>197.3</td>
<td>10.1250(2) 7.5000 5.7857(2) – –</td>
</tr>
<tr>
<td>10</td>
<td>15310.5</td>
<td>197.3</td>
<td>11.1111(2) 8.0000 6.2500(2) – –</td>
</tr>
</tbody>
</table>

Table 4.14
Scaling of Algorithm 3.6 for computing all the Z-eigenvalues

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

and all the other entries are zeros. In Algorithm 3.6, to get the real Z-eigenvalues correctly, the value of δ decreased to be smaller than 10^{-6} during the loop. The computed nonnegative real Z-eigenvalues are

\[
\lambda_1 = 1.000001, \quad \lambda_2 = 1.000000, \quad \lambda_3 = 0.707107.
\]

The whole computation takes about 2 seconds.

We conclude this section by exploring how Algorithm 3.6 scales in terms of sizes of tensors.

Example 4.18. We explore the sizes of symmetric tensors for which Algorithm 3.6 can get all their Z-eigenvalues. Randomly generated symmetric tensors are tested, in the same way as in Example 4.15. The dimensions and orders of random symmetric tensors, whose real Z-eigenvalues can be found by Algorithm 3.6, are shown in Table 4.14. In the left half of Table 4.14, we choose values \(n = 3, 4, 5, 6 \). For each \(n \) of them, we list the values of \(m > 2 \) such that we can find all real Z-eigenvalues by Algorithm 3.6. Similarly, in the right half of Table 4.14, we choose values \(m = 3, 4, 5, 6 \). For each \(m \) of them, we list the values of \(n \) such that we can find all real Z-eigenvalues by Algorithm 3.6.

REFERENCES

