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Abstract. A serious problem in the initialization of a
climate forecast model is the model-data incompatibility
caused by systematic model biases. Here we use the La-
mont model to demonstrate that these biases can be effec-
tively reduced with a simple statistical correction, and the
bias-corrected model can have a more realistic internal vari-
ability as well as an improved forecast performance. The
results reported here should be of practical use to other
ocean-atmosphere coupled models for climate prediction.

1. Introduction

In recent years, much research effort in climate prediction
has been devoted to model initialization and data assimila-
tion issues. An outstanding problem in this research area is
the model-data incompatibility caused by large systematic
model biases. For various reasons, even the most compre-
hensive general circulation models (GCMs) are not immune
to this problem, let alone the models with highly simplified
physics such as the Lamont model [Cane et al., 1986; Zebiak
and Cane, 1987]. Without an effective method to reduce
the model-data mismatch, assimilating real data into the
initial state of a forecast model could result in an initializa-
tion shock, which would prevent the model from achieving
its optimal predictive skill.
One way to deal with this problem is to assign less weight

to observational data to make initial conditions more consis-
tent with the intrinsic model structure. For example, by us-
ing a coupled data assimilation procedure that relies more on
model winds than on observed ones, we were able to reduce
the initialization shock of the Lamont model and greatly im-
prove the model’s forecast skill for the 1980s [Chen et al.,
1995]. This approach implicitly assumes that the model does
not need much data to keep itself on track, evidently the case
for the 1980s and early 1990s, when the observed ENSO
bore a strong resemblance to the model’s internal variabil-
ity. However, the assumption does not hold for recent years,
when the model simply could not work well without a strong
helping hand from data [Chen et al., 1998, 1999]. In any
case, a forecast scheme that neglects the majority of avail-
able observations for initialization cannot be optimal.
Moreover, as long as model biases are intact, a fore-

cast system will not be able to predict the spatial structure
of ENSO even when it gets the temporal evolution right.
As shown in Figure 1, the same types of systematic bi-
ases are found in all three previous versions of the Lamont
model, whether the model was initialized with only observed
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wind stress (LDEO1) [Cane et al., 1986], both observed and
model wind stress with more weight on the latter (LDEO2)
[Chen et al., 1995], or a combination of wind stress and sea
level from both observation and model (LDEO3) [Chen et
al., 1998]. The model biases in wind stress include the large
off-equatorial easterlies in the eastern tropical Pacific and
the absence of equatorial easterlies in the far western Pacific.
The model-predicted warm event tends to shift northward
around 130oW and southward near the eastern boundary.
In order to make full use of data without much initializa-

tion shock, and to predict both temporal and spatial struc-
ture of ENSO, we have to correct the systematic model bi-
ases. Not much attention has been paid to this problem in
the past. An exception is the enlightening work of Barnett
et al. (1993), which is particularly relevant to our present
study. In the development of their hybrid forecast model,
they found it necessary to correct the sea surface temper-
ature (SST) biases of their ocean GCM before passing the
SST fields to the statistical atmosphere model. They built
their error corrector based on model output statistics (MOS)
and used both model SST and sea level as predictors. In the
present study, we applied a similar method in a more sys-

Figure 1. Observed and forecast SST and wind stress anomalies
in January 1983. Forecasts were made at 3-month lead by the
Lamont model with three different initializations.
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Figure 2. Time-longitude plots of the equatorial SST and zonal
wind stress anomalies from the bias-corrected Lamont model
(LDEO4).

tematic way to correct the biases of wind stress, SST and
sea level fields of the Lamont model, with the intention of
improving the model’s realism as well as its forecast perfor-
mance.

2. Methodology

The bias correction method used here is based on the re-
gression of model errors and model states in a reduced space
of empirical orthogonal functions (EOFs). The EOFs and
regression coefficient matrices were obtained using 16 years
(1970-85) of observational data and model output. The ob-
servational data include the CAC SST analyses [Reynolds
and Smith, 1994], the FSU wind stress analyses [Goldenberg
and O’Brien, 1981], and the sea level product based on tide-
gauge observations [Cane et al., 1996]. The model output is
from forced model runs, that is, the SST and sea level from
the ocean model forced with the FSU winds, and the wind
stress from the atmosphere model forced with the CAC SST
fields. Defining E as the error of a model variable and S as
the model state consisting of anomalous SST, wind stress
and sea level, we have

E(t, x) =
∑

n

αn(t)en(x), (1)

S(t, x) =
∑

n

βn(t)sn(x), (2)

where t is time and x is the spatial domain of the tropi-
cal Pacific (20oS to 20oN, and 130oE to 85oW); α and e
are the temporal and spatial coefficients of the model error
EOFs, and β and s are the corresponding coefficients for the
multivariate EOFs (MEOFs) of the model state. The three
variables that define the model state are weighted equally
in calculating the MEOFs. The regression coefficients r re-
lating the error of a model variable and the model state is

defined as
rnm =

∑

t

αnβm/
∑

t

β2m. (3)

The procedure of bias correction at a particular time t
is as follows. First, the current model state and the state
MEOFs are used to obtain β:

βn(t) =
∑

x

S(t, x)sn(x), (4)

then α for a particular model variable is calculated according
to

αm(t) =
∑

n

rnmβn(t), (5)

and finally the biases are estimated using (1) and are sub-
tracted from the model fields. The same procedure is applied
to correct model wind stress, SST, and sea level at each time
step. This amounts to adding an interactive statistical com-
ponent to the coupled model, and therefore is not just a
MOS correction on model output. There are two important
practical questions that need to be addressed here. One
is how many EOF and MEOF modes should be retained.
By trial and error, we chose 6 EOF modes for SST, 8 EOF
modes for wind stress and sea level, and 8 MEOF modes for
ocean state. The model behavior is not particularly sensitive
to the number of modes as long as 5-8 modes are included.
The other question is whether to make the EOFs and ME-
OFs time invariant (one model for all times), or to construct
a separate set for each calendar month [Barnett et al., 1993].
We chose the latter because it leads to more realistic model
behavior. Hereafter we refer to this bias-corrected model as
LDEO4 to distinguish it from three previous versions of the
Lamont model.

3. Results

The internal variability of LDEO4 was investigated in a
100-year model run. The only external forcing was a patch
of westerly wind stress in the western equatorial Pacific dur-
ing the first 6 months of the experiment. Figure 2 shows
the model SST and zonal wind stress anomalies along the
equator for the first 50 years. The model’s internal variabil-
ity is dominated by a 3-4 year oscillation that has compa-
rable amplitude and zonal extent to observed ENSO, but
tends to be more regular. There appears to be an east-
ward propagation, especially in wind stress anomaly, that

Figure 3. First mode multivariate EOFs calculated from 24
years (1975-98) of observation (24% variance) and from 50 years
of LDEO4 model run (36% variance).
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Figure 4. Observed and forecast SST and wind stress anomalies
in January 1983. Forecasts were made by LDEO4 at lead times
of 0, 3, and 6 months.

again agrees well with observed ENSO. This is a distinctive
improvement over the original Lamont model, whose inter-
annual variability is essentially a standing mode [Zebiak and
Cane, 1987]. The spatial structure of the dominant coupled
mode in LDEO4 is depicted in Figure 3, where the first
mode MEOFs of the model SST, sea level and wind stress
are compared with those constructed from 24 years (1975-
98) of observational data. The general agreement between
the two is quite striking, although there remain some small
differences.
Now let us examine the forecast performance of LDEO4.

Here the model was initialized with observed winds as in
LDEO1 and with observed sea level as in LDEO3. Figure 4
shows the LDEO4 forecasts at different lead times verified
in January 1983. It is obvious that LDEO4 does a much
more credible job in predicting the spatial structure of the
1982-83 warm event, as compared to the previous versions
of the model (Figure 1). The large off-equatorial easterlies
in the east were largely reduced, the equatorial easterly in
the far west was well reproduced, and the SST pattern was
more in line with the observed El Niño. One may argue
that the drastic improvement here is artificial because this
event is included in the training period of our bias correction
model. Then perhaps it is more convincing to compare the
results for December 1997 (Figure 5). LDEO1 and LDEO 2
(not shown) underpredicted this warm event while LDEO3
overpredicted it. The same patterns of biases found in the
forecasts of the 1982-83 event by LDEO1-3 (Figure 1) are
also evident here. LDEO4, being almost bias free, again
produced the best forecast for the 1997-98 El Niño.
We have evaluated the LDEO4 forecasts of NINO3 (SST

anomaly averaged from 5oS to 5oN, and 90oW to 150oW) at
different lead times for the period from 1972 to 1998. The

model predictions were generally good, certainly measuring
up to the state of the art. There still remain some problems
that are common to many models, such as the inability to
predict the onset of the 1997-98 El Niño at long lead times.
Figure 6 compares the forecast skill of LDEO4 to that of
LDEO1-3 for two different periods: one from 1972 to 1985
and the other from 1986 to 1998. The model should be
free of artificial skill for the latter period, since the observa-
tional data from that period were not used for training. For
the 1972-85 period, LDEO1 had the lowest correlation score
and the largest root mean square (rms) error; LDEO2 and
LDEO3 were comparable with each other in skill and were
much better than LDEO1; LDEO4 was clearly the winner
in terms of both correlation and rms scores. For the 1986-
98 period, LDEO4 was still the best in both scores; LDEO3
was a close runner-up due to its rather successful predic-
tion of the 1997-98 El Niño (Chen et al., 1998); LDEO1
and LDEO2 did not score high in this period because they
missed almost everything after the 1991-92 event.

4. Discussion

The formalisms typically used in ocean and atmosphere
data assimilation technuques take a “textbook” approach
and assume model biases do not exist. In practice, the “un-
biased” a priori error estimates are often inflated in order
to achieve consistency in a posteriori verification. Conse-
quently, almost all successful uses of data assimilation in
ENSO forecasting weight models unrealistically high com-
pared to observations. This is particularly true for adjoint
methods, which treat the model as if it had zero error. An-
other way of describing the same problem is to say that
there is an initialization shock when data are inserted into
initial model states without taking account of model biases.

Figure 5. Observed and forecast SST and wind stress anomalies
in December 1997. Forecasts were made at 6 month lead by
LDEO1, LDEO3, and LDEO4.
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Figure 6. Correlations and rms errors between model forecast
and observed NINO3 index for 1972-82 and 1986-98 periods. Dif-
ferent grey-scales are assigned to the different curves representing
four versions of the Lamont model.

The adjoint methods take the ultimate path to remove it,
sacrificing the data if need to. In other schemes, the data-
model difference projects onto rapidly growing error modes,
resulting in a poor forecast.
We have demonstrated in this study that the systematic

biases of the Lamont model can be effectively reduced with
a simple statistical correction based on the regression be-
tween the leading EOFs of the model errors and the leading
MEOFs of the model states. The bias-corrected model not
only performs better in ENSO forecasting, but also exhibits
a more realistic internal variability. It is important to note
that the bias correction is an integral part of the coupled
model so that, for instance, the bias-corrected SST field will
be used for the next computation of the wind field, and so
on. This is why a bias-corrected model can have a different,
and hopefully more realistic, internal variability. The bias
correction procedure reported here should be generally ap-
plicable to other coupled ocean-atmosphere models, albeit
the specifications of the optimal statistical corrector may
differ.
Having a bias-corrected model makes it more straightfor-

ward to assimilate data for model initialization, which is the
motivation of this study in the first place. The predictive
skill of the original Lamont model (LDEO1) was severely
limited by the initialization shock caused by large model bi-
ases. Previously, the only way to make a smooth start from
initial state with this model is to put less weight on obser-
vational data during initialization (LDEO2 and LDEO3).
With the systematic biases corrected, the model (LDEO4)
experiences no shock even when initialized with full observed
wind stress anomaly field as in LDEO1, because the model

wind stress anomaly is now very similar to the observed.
However, we are still not able to initialize the model with
full observed SST and sea level data without a shock, which
suggests that our correction on SST and sea level is proba-
bly not as effective as that on wind stress. More analysis on
this issue is needed.
The model performance is still far from perfect. The most

obvious shortcoming is its relatively poor forecast skill in re-
cent years. This is a common problem for all ENSO forecast
models and there must be a physical reason for it. We cannot
expect to solve this problem by merely reducing systematic
model biases. We consider the bias correction procedure de-
scribed here as a practical tool for forecast models rather
than the ultimate solution for model deficiencies. Never-
theless, careful analyses of the EOF modes of model biases
may help us to identify model problems and improve model
physics, and eventually alleviate the need for bias correc-
tion. On the other hand, because of specific model design,
it may not be possible for some models, including the La-
mont model, to physically eliminate model biases without
fundamentally rebuilding the model. In such cases, statis-
tical bias correction is certainly a useful way to bridge the
gap between the model and reality.
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