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Introduction

:'l:'+(co2+ecost)x=0
the width of each parametric resonance zone (or forbidden zone, in the
terminology of solid state physics) decreases like a power with decreasing
depth of modulation €, and the exponent is proportional to the number of

the zone (Fig. 1).
]
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Fig. 1.

[t follows, in particular, from general theorems in the present article that
the zones of instability for Hill’s equation

z + (0* + ea(t)z = 0
have the same property when the variable coefficient a is any trigonometric

polynomial (the exponent for the width of the zone decreases in inverse
proportion to the degree of the polynomial).
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For the general Hill’s equation (with any periodic coefficient a) the
situation is completely different; for a typical a the width of any zone
decreases like the first power of e.

In view of the general algebraic nature of the proof, it is applicable also
to many other problems in which the perturbation is a trigonometric
polynomial. Linear equations or systems with constant coefficients in the
leading term and with coefficients in the form of trigonometric polynomials
in the lower-order terms thus have special properties, and can be called
equations of Mathieu type.

For example, consider the equation in the Zel’dovich problem of the
existence of a steady-state kinematic magnetic dynamo:

H = {v, H) + DAH,

where H is an unknown 2a-periodic (in (x, y, z)) magnetic field of divergence
zero that is carried by a 2n-periodic velocity field v of an incompressible
fluid and diffuses with diffusion coefficient D (A = —rot rot is the Laplacian
and {-,-} = rot [-, ] denotes the Poisson bracket).

The equation is of Mathieu type if the components of the field v are
trigonometric polynomials (for example, for the velocity field

cos y - sin z, cos z + sin z, cos z -+ sin y

considered in [1], which exponentially expands the particles of the fluid).
It was in investigating this example that I observed the general properties
described above of equations of Mathieu type.

In student work done in 1959 [2] 1 investigated the family of mappings
of the circle onto itself of the form

T—> I+ a-+ ecosx

and established that the zone of resonance m/n in the (a, €)-plane (Fig. 2)
reaches the point a = 2nm/n on the axis € = 0 by a narrow tongue whose
width decreases like €™ as € = O (this is stated without proof in {2]).
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Fig. 2.

The theory of equations of Mathieu type suggests that here also the
cosine can be replaced by a trigonometric polynomial of arbitrary degree p
(with the corresponding replacement of e® by &', where r = {—n/p]).

Thus, the problem of zones of resonance for such special mappings of the
circle also turns out to be ‘“‘a problem of Mathieu type”.
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I did not try to formulate a single abstract theorem which would yield
the above properties of resonance zones at once both for Hill’s equations of
Mathieu type and for mappings of the circle onto itself, although the
algebraic reason for the power decrease in the width of a zone with the
amplitude of modulation was obviously the same in the two cases (the
conjecture that such a general theorem must exist was communicated to me
by Gel'fand as far back as 1959 in a discussion of the results in [2]).

It gives me special pleasure to include a proof of the theorem from the
1959 work, carried out under the direct guidance of Kolmogorov, in the
present article, which is dedicated to A.N. Kolmogorov on the occasion of
his 80th birthday.

§1. Rayleigh-Schrodinger series for perturbations of a simple eigenvalue

We need some (simple) properties of the expansion of an eigenvalue of a
matrix A+eA, where A is a diagonal matrix, in a series of powers of the
small parameter €. Let A; denote the eigenvalues of the unperturbed
operator A, and V; the eigenspaces, so that

A= @Ai, ‘Ai = A,iE‘Z V,' —>Vi, ;\'i = }"j'

We decompose the matrix of the perturbing operator into the corresponding
blocks
A”: V! - Vj.

Definition. The quiver of the family A+eA is defined to be the directed
graph with vertices corresponding to the V; (thev are denoted by i) and with

ar VUERe BULLLE LIVILL E LU o Wil UL vpuiatus 111']' 1O 1RVIL Lva v

Example. For the Mathieu operator
A+ ed = d*/dt* -+ ecos t

defined in the space of 2a-periodic functions of ¢ the space Vi is spanned
by exi*® and A is the operator of multiplication by cos ¢. Therefore, the
quiver has the form

o 1 2

D~ SR = =< co®

In quivers for operators of Mathieu type each vertex is directly connected
with a finite (and even uniformly bounded) number of vertices. This is
because a product of trigonometric polynomials is again a trigonometric
polynomial.

We return to the general family A+eA.

Definition. The chronological product of apathy=({—~>j—> ... >k~
along arrows of a quiver is defined to be the product of the operators
corresponding to the arrows, in the order indicated by the arrows:

HV(A) = (Akl' .« e ‘A,'j): Vi —>V1.
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It is easy to prove the following result (by comparing the coefficients of
€, €2, ...; see §4). -

Theorem 1. The perturbation of a simple eigenvalue is given by the series
A.=7~o+8<21+82a2+...,

in which the coefficient of the k-th power of the perturbation is equal to
the sum

ap = Z H‘V(A)O‘V(A)v lvl= k,

over all loops of length k made up of arrows in the quiver and beginning
and ending at the point 0.

Here IL,(A) is the chronological product of a loop, and Q,(A) is a
universal (independent of A) rational function of those eigenvalues of the
unperturbed operator that correspond to the vertices in the loop 7.

Remark 1. The explicit form of the rational function Q is not needed for
the present, but it is given in §4.

Remark 2. If the quiver is locally finite, then there are finitely many terms
in the sum for o4, so the formal series for A can be written. Its convergence
for operators of Mathieu type is ensured by the ellipticity of the principal
term, but we shall regard this series as formal (or we shall assume that the
operators are finite-dimensional).

§2. Perturbations of a multiple eigenvalue

If A, is a multiple eigenvalue, then under a perturbation it does not vary
smoothly, but the corresponding invariant space V,and the restriction of the
operator to this space do vary smoothly. The expansions of these objects in
power series in € are given by precisely the same formulae as the perturbations
of an eigenvector and an eigenvalue when the latter is simple.

We look for the perturbed invariant space in the form of the graph of a
mapping

eB + 2B+ ..., Bk V,—->®V, is*0.

The condition that the graph be invariant is written as the operator
_equation
(A+ ed)E°D eB*+ ...) = (E° D eB + .. JAE®* + ea; + .. .),

where the o : ¥V, > V,, are unknown linear operators, as are the B* and E°
is the identity transformation on V.

The sum in the last set of parentheses plays the role of the perturbed
eigenvalue. Indeed, this operator, which acts in the space V,, is similar to
the restriction of A+eA to the perturbed invariant space. Therefore, its
spectrum coincides with the part of the spectrum of A+eA which arose
from Ay. We shall call it an eigenoperator of the family A+eA.
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Theorem 2. The coefficient oy : Vo > Vi in the expansion NoE°+ea,+ €2, +
+ ... of an eigenoperator of the family A+eA is given by the same formula
in Theorem 1 as the coefficient oy in the expansion of a simple eigenvalue.

Indeed, this operator equation can be solved in precisely the same way as
the scalar equation. For example, equating the coefficients of €, we find
that

AB! + AE® = E, - B,
from which, representing B! in the form B! = @ B}, where B} : Vo, = V; for
i # 0, we find that
oy =4y, Bi=Ay/(ho—2A).
Equating the coefficients of &2, we obtain
AB?* + AB' = E%, + Bla, -+ B,

Equating the Vycomponents of the left-hand and right-hand sides, we find
that

ay =3} A;oBl = 2} Ajodoil(hg— Ay).
And equating the V,,-components for m # 0, we find that
(ho— Am) Br = (AB*)p, — (Blay) m,

from which
4. 4
T (Ag—Am) (Ag—A)  (Ao—Am)<”

and so on (the general formula for the denominators of all the terms is
written out in §4).

§3. Widths of forbidden zones of even Hill’s equations of Mathieu type

Let us consider Hill’s equation

d?z/dt? + (0% + ea(t))z = 0, a(t + 2a) = a(t).

The zones of parametric resonance (or forbidden zones) are defined as the
regions in the plane of the parameters (w, £) in which the multipliers (the
eigenvalues of the monodromy operator for the given equation with periodic
coefficients) are greater than 1 in modulus.

Theorem 3. Assume that the coefficient a is an even trigonometric
polynomial of degree p:

a(t) = D, a,e', the s are integers, a; = 0 for Is| > p, and a_; = a;.

Then the width of the N-th forbidden zone decreases no more slowly than
Ce" as ¢ = 0, where r = —[-N/p].
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Proof. According to the general theory of Hill’s equation, the multipliers
are equal to —1 or 1 on the boundary of a zone, depending on the parity of
the number of the zone. Therefore, the boundaries of the zones can be
determined with the help of the eigenvalues \* of the operator

d*/dt® + ea(t)

on the space of 2n-periodic functions (for even zones) or on the space of
4n-periodic functions which change sign under translation by 2n (for odd
zZones):

o = +) A%,

For € = 0 the N-th zone contracts to the point wj = N/2, and the
corresponding pairs of eigenfunctions have the form

€n, €_n, Where e, =™, n=N/2, N=0,1,2, ...

(the eigenvalue is simple when N = 0).

To investigate the perturbed eigenvalues A we apply the general formula in
Theorems 1 and 2 to the diagonal operator A = d?/dt? and to the perturbation
eA (where A is multiplication by a).

Let V,, denote the space spanned by e, and e_,, (this space corresponds
to N, = —m?, where m = M/2, and M runs through either all the even or all
the odd non-negative integers, depending on the parity of the number N of
the zone under investigation).

Lemma 1. The matrix of the operator A;; . V; = V; in the chosen basis has
the form
(*) (A”) — (Z)‘-i aj+l) .

—j-i Gi-j

Proof. Multiplication by e, carries ¢; into ¢;, ;. Therefore, in the product
of the trigonometric polynomial a = 2] a.e, by e; each term falls in an

eigenspace different from V; except for the terms with s = j—iand s = - —1,
and similarly for ae_;.
Lemma 1 gives us the next result.

Lemma 2. If i+] > p, then the matrix (Ay;) is scalar: (A;) = a;_;E.

Indeed, the degree of the polynomial a is equal to p, therefore,
a;+j =a_;—; = 0. Since a is an even polynomial, the diagonal elements of
the matrix ( *) are all the same, and this proves Lemma 2.

We arrange the quiver of the family A+&A4 on the m-axis. Its vertices are
all the non-negative integer points if the number () of the zone being
investigated is even, and all the positive half-integer points m if N is odd.
The length of each arrow in the quiver does not exceed the degree p of the
perturbing polynomial a.
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Definition. An arrow { — j in a quiver is said to be remote if the sum of the
coordinates of its initial and terminal points is larger than the degree of the
perturbing polynomial a:

i+j>p.
Example. A remote arrow does not contain the point 0.

The following simple lemma contains the main, “topological” point in the
proof of Theorem 3.

Lemma 3. Consider a loop of k arrows, each of length at most p, that
begins and ends at the point n. If kp < 2n, then all the arrows in the loop
are remote.

Proof. Suppose that there is a non-remote arrow i = j in the loop, where
i+j < p. We replace the vertex j and all the subsequent vertices and arrows
of the loop by the vertices and arrows symmetric with respect to the origin.
The arrow i —j itself is replaced by the arrow i = —j. Its length is not
greater than p, because the arrow i = j is non-remote. Accordingly, we have
obtained a path from n to —» made up of k arrows, each of length at most
p. The length of the whole path is at most kp. But kp < 2n, by hypothesis.
Hence, there is no non-remote arrow in the loop.

Completion of the proof of Theorem 3. Let us use Theorem 2. To
compute the correction to the repeated eigenvalue A(0) = —n? we form the
eigenoperator (second-order matrix)

The matrix o can be expressed as a sum over admissible loops consisting
of k arrows in our quiver and going from #» to n (in the present notation the
point O in Theorems 1 and 2 is denoted by n). The length of each arrow is
at most p, since the perturbation has degree p. By Lemma 3, all the arrows
in such a loop are remote when kp < 2n. By Lemma 2, a scalar (in our
basis) matrix (A4;;) corresponds to a remote arrow i = j. Therefore, all the
chronological products in the formula for oy consist of scalar matrices.
Hence, the matrix oy is scalar as long as & < 2n/p. But the difference
between the two eigenvalues of the matrix A(g) does not exceed CeX, where
K is the number of the first non-scalar matrix among the o . We proved
above that K =2 r = —[—2n/p]. Thus, the distance between the two
eigenvalues A*(e) (and hence the width of the zone) decreases no more
slowly than e, which is what we needed to prove.

Remark 1. We have not used the fact that the perturbing polynomial is real:
the estimate | A* — A~ | < Ce", ¥ = —[—2n/p], for the splitting of the
eigenvalue A= —n? under perturbation by a trigonometric polynomial of
degree p has been proved for all even polynomials with complex coefficients.
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Remark 2. Without the assumption that the perturbing polynomial a is
even, our arguments prove only that the matrices o with k¥ < 2n/p are
diagonal, and not that they are scalar. In reality the diagonal elements are
equal even without the assumption of evenness, but to prove this we have to
use not only the form of the numerators but also the denominators of the
terms in the Rayleigh-Schrodinger series.

§4. Formulae for the denominators of terms in the perturbation theory series

We return to the perturbation theory series and to the notation in § §1 and
2. In order to write out explicitly the rational function Q in Theorems 1 and
2 we consider properly formed symbols with parentheses, of the type
Wa))b(c(de))f (a(), )a(, and (ab)) are improperly formed symbols).

Definition. The length of a symbol is defined to be the number of letters
and left parentheses appearing in it.

Example. Symbols of length 2:
A ab, (a).
Symbols of length 3 oceur in five forms:
T abe, (@b a), (ab), ((@).
There are 14 forms of symbols of length 4.

Remark. The numbers of forms of symbols of lengths # = 1, 2, ... make up
the Catalan sequence 1, 2, 5, },4, 42, 132, ...; the n-th number in this
sequence is also equal to the number of simplicial decompositions of a
convex (n-+ 2)-gon by non-intersecting diagonals, and is given by the
formula® 2n)l/nl(n + 1)!

Definition. A filling of a symbol with parentheses is defined to be the result
of substituting in it (in place of the abstract letters a, b, ...) non-zero vertices
of the quiver of the family A+e&A under investigation (the vertex O
corresponds to the eigenvalue Ay being perturbed).

Example. Fillings of the symbols of length 2 with parentheses have the form
ij or (i),

where i # 0 #j; i can coincide with j, but if / # j, then the fillings i and ji

are different.

(The Catalan numbers appear in the solution of very diverse problems, and are not
always identified. For example, a general Riemann surface of genus 2k can be
represented as a (k+ 1)-sheeted covering of the sphere (with 6& branch points) in finitely
many ways, Griffiths and Harris [3] find this number (there are 1, 2, 5, 14, ... ways for
the values of the genus 2, 4, 6, 8, ...), but do not note that they have obtained the
Catalan numbers.
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Definition. The loop of a filling of length » is defined to be the loop

O —...—i, -0,

where between the end 0’s we have placed in succession (from left to right)
the vertices of the filling and 0’s wherever there are left parentheses in the
filling (the right parentheses are ignored in constructing the loop).

Example. The loop of the filling (i) is 0 >0 =i —> 0.

Definition. The diagram of a filling is obtained from the loop of the filling
by adding a dashed arrow leading to each O which replaced a left parenthesis,
from the vertex immediately preceding (to the left of) the right parenthesis
corresponding to this left parenthesis.

Example. The diagram of the filling (i) is

AT
0—> Q> ——a>(0 .

Definition. The denominator of a filling is defined to be the product of
factors of the form Ay— A; (once for each solid arrow of the diagram of the
filling that leads to the vertex i # Q) and factors of the form \; — A, (once
for each dashed arrow of the diagram that leads from the vertex i #+ 0).

Example. The denominator of the filling (i) is —(XAo— X;)?, according to the
diagram in the preceding example.
A filling is said to be admissible if its loop consists of arrows of the quiver.

Thonwn A Tl 1- b1 mcicenntinan $~ thn nimnmvaliin (ay oiconnnevafor)
A= Agb>+Eq + e QT ... UNder the Perturbation N+ gA is given py ine
formula

3 Loy (4)

&y =
k ar (A ?

Hp=h-1

where the sum is over all admissible fillings of all the symbols of length k— 1
with parentheses, and the contribution of each filling is equal to the ratio of
the chronological product of its loop to the denominator of this filling.

Example.
AjA
oy = Aom &y = :_S‘_J Aoli_xo: ’
150
— jodijAo _ AgoAgiAoo
a3__2 . (ho—2i) (ho—Ay) Z (ho— A1)
i03£) i+0

(the sum of the contributions of the diagrams - - — and

T
> ).
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Remark 1. Theorems 1 and 2 are obtained from this theorem by summing
the contributions of the diagrams with a common loop. Thus, the rational
function Q,(A) in Theorem 1 is equal to the sum of the reciprocals of the
denominators of all the fillings with a given loop 7.

Remark 2. If a loop does not return to the point O between its beginning
and end, then there are no dashed arrows, and Q =H (Ao — A;)7t (the
product over all internal vertices of the loop).

For example, if Ago = 0 (which is always easy to achieve by including
Ago in Ap), then all the loops of length < 4 in the quiver that go from 0 to 0
do not visit 0 on the way. Consequently, for Ag = 0

Aiodoi . Aj_____."AUAoi
0, =0, =72 753, “3—_2.@0—1»00—%;)'
i#0 i#+0=£3

The formula for «, is even more complicated. But the first non-zero
coefficient in oy is always equal to the sum of the contributions of the
loops that do not visit 0 and, consequently, is given by a simple formula
analogous to the ones written out.

Theorem 4 can be proved at the same time as the formula for the
corrections to the invariant subspace (Theorem 5). To write this formula we
define for each filling / the path 6(1) of the filling, which is obtained from
the loop of the filling by discarding the last (right-hand) vertex 0 along with
the arrow leading to it.

A filling is said to m-admissible if its path goes from O to m along arrows
of the quiver. We look for the invariant space of A+eA obtained by
deformation of V, in the form of the graph of a mapping

B=¢eB'+ e*B*+ ..., B Vy—>&®V,, m=*~0.
The components of the operator B¥ are denoted by
Bh: Vo>V, m=£0.
Theorem 5;. The operators correcting the invariant space are given by the
formula

g1y (4)
Bh= &)

gr (A)
1=k

where the sum is over all the m-admissible fillings of length k, and the
contribution of each filling is the chronological product of the path of the
filling, divided by the deonominator of the filling.

Example 1. The formula written out in §2 for B2, is the sum of the
contributions of the fillings im and (m).
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Example 2. 1If the eigenvalue A, is simple and &, is an unperturbed
eigenvector, then the perturbed eigenvector has the form

Btedlth+e2 Eh+..., En=Bnk,.
Proof of Theorems 4, and 5,. In the invariance equation

(A + eA)E® 4+ eBY + .. .) = (E° 4+ eB '+ . . )(AoE® + ey + .. .)

we equate successively the coefficients of €, g2, ... . For B¥ we obtain the
equation

B¥\y — AB* = AB*-1 — B*-lg, — . .. — Blo,_; — ay.
For this equation to be soluble it is necessary that
ar=2 AmBn !, m0.

Therefore, Theorem 4, follows from Theorem 5,_,. Choosing o in this
way, we find that

(+5) Bin=(ho— Ay (3 AimB ' — Br'oy — ... — Browy), i5<0.

Computing all the B%, successively, we obtain the chronological products and
prove Theorems 1 and 2. The explicit form of the denominators can be
found by proving that Theorem 5, follows from Theorems 4, and 5,,
0<I<k. .

Indeed, the first term of the expression (*;) for B, is the sum of the
contributions of the m-admissible fillings of length k that are obtained from

~ P I R 1 1

L' P .

on the right-hand side. Each of the remaining terms, say the one containing
Bt-sg . is the sum of the products of the contributions from the admissible
fillings of length s— 1 and the m-admissible fillings of length k —s, divided
by A,,— No. From two such fillings we can make a filling of length k by
appending a parenthesized m-admissible filling of length k —s (from the sum
for BX=%) on the right-hand side of an admissible filling of length s~ 1 (from
the sum for o). Here the contribution of the resulting filling of length % is
exactly equal to the product of the contributions of the component fillings,
divided by A\,,— A, (this superfluous factor in the denominator of the filling
of length k arises because of the parentheses enclosing the m-admissible
filling of length k—s). Conversely, each m-admissible filling of length k is
obtained—precisely once—under these operations, for there is a unique way
to dismantle it from the right-hand end (if a letter is on the right-hand end,
then it is removed, and if there is a parenthesis, then the symbol enclosed in
it is detached and the corresponding outer parentheses are taken away).

Theorem 5, thus follows from the preceding Theorems 4; and 5;,. The
assertions 4, and 5, are obvious, so Theorems 4 and 5 are proved.

Suppose now that &; = o, = ... = ag_; = 0. In this case the answer
becomes much simpler.
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Theorem 6. The first non-zero correction to the eigenvalue (or eigenoperator)
is given by the formula
E Iy (4)

[J(to—29)

(the summation is over the loops of length k in the quiver that start and end
at 0 but do not visit 0, and the multiplication in the denominator is over all
the internal vertices of the loop).

Oy =
Ivl=k

Proof. In this case the terms with «;, ..., og_; drop out in the computations
according to the formula (*;) with / < k, therefore, B} = (Ao~ Ki)“ZAj,- it
(I =1, .., k—1), which leads to the formula in the theorem.

§5. Conclusion of the investigation of forbidden zones

We now consider the Hill’s equation of Mathieu type
d*z/dt* + (w® + ea(t))z =0
with an arbitrary trigonometric polynomial of degree p with complex
coefficients:
a(t) = D ae™, the s are integers, and s <p.

In §3 we introduced the eigenvalues A* (which determine the ends of the
forbidden zone if the polynomial g is real).

Theorem 7. The degree of splitting of the eigenvalue N\ = —n?, where n is a
positive integer or a half-integer, admits for small el the upper estimate
[ — AL Clef, r=—[—2n/pl

Proof. Arguing as in the proof of Theorem 3, we get sums over loops of
* remote arrows as expressions for the coefficients o, in the expansion of the
eigenoperator in a series of powers of € when kK < 2n/p. Consequently, all
“tﬁe matrices (4;) (§3) appearing in the chronological products with such a
riumber k of factors are diagonal and thus commute with one another. This
implies that the matrices o are also diagonal, but we shall see that they are
actually scalar due to special symmetry properties of our expansions.

Definition. Two second-order diagonal matrices are said to be dual if they
differ only in the order of the diagonal elements.

Suppose that the arrow i = j is remote, so that the second-order matrix
(A4;;) is diagonal. The formula given in §3 implies the next result.

Lemma 1. The diagonal elements (a;_;, a;_;) of the two matrices (A;;) and
(Aj;) differ only in their order.

From this it is clear that any polynomial in all such matrices, in which
the matrices corresponding to oppositely directed arrows appear
symmetrically, is a scalar matrix.
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Let us show that in the expression for «; in Theorem 4 the matrices
corresponding to oppositely directed arrows appear symmetrically. It will
thereby be proved that the matrices oy with & < r are scalar, and Theorem 7
obviously follows from this.

Lemma 2. On the set of all admissible fillings of all symbols of length k— 1
with parentheses there is an involution such that the contributions to oy of
a filling and its image under the involution are obtained from each other by
replacing all the A;; by Aj;.

Theorem 7 follows from the formula in Theorem 4 and Lemma 2, since
the matrices a; are scalar matrices for k <r.

Proof of Lemma 2. We break up a filled symbol with parentheses into the
fragments between the successive left parentheses. For example, the symbol
a((b)(cd))e( fg) is broken up into the fragments a, b), cd))e, and fg). Then
inside each fragment we write all the vertices in the reverse order, regarding
each right parenthesis as associated with the letter closest to it on the left.
The fragments a, b), ed))c, and g)f are obtained in the example given. We
next place left parentheses in the previous places between the fragments.
The filling a((b)(ed))c(g)f is obtained in the example.

The constructed operation carries a properly formed symbol with
parentheses into the properly formed dual symbol, as it does not change
the order of the parentheses and does not create pairs of the form ().

A filling dual to an admissible filling is admissible, because the matrices
A;; and Aj; are either both zero or both non-zero. We compute the

rantribhiitinne ~F Anal fitlines

Lemma 3. The chronological products of mutually dual fillings appearing in
the expansion of oy for k <r are mutually dual.

For by Lemma 1, the factors are mutually dual and commute.
Lemma 4. The denominators of dual fillings coincide.

Indeed, the denominator of a filling is composed of factors Ao— \; with i
running through the elements of the filling, and factors A; — A, with i
running through the elements preceding the right parentheses (where each
factor is counted as many times as there are right parentheses immediately
after the corresponding 7).

Both the set of elements in the filling and the set of elements which
preceded right parentheses (taking account of the number of parentheses)
are preserved under the operation defined above, as Lemma 4 proves.

Lemmas 3 and 4 imply the equality of the contributions of dual fillings
and, hence, Lemma 2 and Theorem 7.
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§6. Widths of resonance zones for mappings of the circle

We consider an analytic mapping of the circle onto itself that depends on
two parameters g and €:

z— z 4+ a + gf(z), flx 4+ 2n) = f(z).

Definition. A point (g, £) belongs to the domain of resonance m/n if some
point of the circle is shifted by exactly m revolutions when the mapping is
applied n times (that is, if the Poincaré rotation number of the mapping is
equal to m/n).

Theorem 8. Let f be a trigonometric polynomial of degree p. Then the
width of the domain of resonance m/n is at most Ce*, where —r is the
integer part of the fraction —n/p.

Moreover, the domain of resonance m/n is bounded by two curves
a = A*(e) such that the terms of degree less than r in the Taylor expansions
of A* about zero coincide.

Example. Consider the mapping x — x+a+ & cos x. In this case the width
of the domain of resonance m/n is of order €”, as claimed already in [2].

The proof of the theorem is based on an investigation of the r-th variation
of the k-th iterate of a rotation. Consider an analytic mapping

2z +p+ ), glz + 2n) = (@),

that is close to the rotation through the angle u = 2am/n. Its k-th iterate is
close to the rotation through the angle kpu:

Z >z + kp + x8(2).

Let us consider the Taylor expansion at the point g = 0 for the operator
carrying g into ,g. We call the term of degree r in this expansion the
r-th variation of the k-th iterate.

Remark. In order not to have to worry about convergence we can understand
the variations in the following formal way. Assume that g is a linear
combination of any finite number of terms: g = qu}zq. Then . g is a
series in powers of A, and the r-th variation is the sum of the terms of
degree r in X in this series.

Lemma 1. The r-th variation of the k-th iterate can be expressed as a
polynomial of degree r in terms of g, the shifts of g by the angles sy with
0 < s <k, and their derivatives of order less than r.

Proof. This is obvious for k¥ = 1. Assume that it is true for the k-th iterate,
By definition, for the (k+ 1)st iterate

1 r+18 (Z) =18 (7) + g (z + kp + 2 (2)).
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Denote the shifts of g by
gr(z) = glz + kp).
Then
glx + kp + »g(@)) = gr(z + »8(2)).

We expand g in the Taylor series D gif (ng)*/s!, and substitute for g the
series of variations

28 =18+ g+ ...

By assumption, ,g’ is a polynomial of degree i in g, the shifts, and the
derivatives of order less than i. The terms with { 2 r and the terms with

s 2 r do not contribute to the r-th variation. Therefore, these transformations
of the formula (1) express the r-th variation of the (k+ 1)st iterate as the
sum of the r-th variation of the k-th iterate and a sum of products of
derivatives of order less than 7 of the shift of g by the angle ku and
products of the preceding variations of the k-th iterate. The lemma is
proved by induction.

Remark. The first two variations of the k-th iterate can be expressed by
simple formulae:

hg‘=go+g1+ +gk-11
28 =180+ 8, (8o+8)+ - -+ Ei-1(8oF ... +8ra)-

Consider now the n-th iterate of the mapping. Since u = 2am/n, the n-th
iterate of the unverturhed manning returng all the noints of the circle to
LR SR NS TS Plu\/\/b-

On the level of the second term in the perturbation theory the theorem
being proved reduces to the following.

Proposition. Let g be a trigonometric polynomial of degree less than n/?2,
and suppose that ,g' = 0 (that is, the mean value of g is equal to 0). Then
282 = const.

Proof. Consider the difference
n82 (24 p)— 82 (@) =8n (8t .-« +8ng) — Lo (&1t .- -+ &ny)’.

Since g, = g and g+ ... +g, = 0, this difference is equal to zero.
Consequently, , g2 is a trigonometric polynomial of degree less than n with
period 2n/n, that is, it is a constant. The proposition is proved. It implies
our theorem for r < 3.

The proof in the general case uses an analogous argument, formalized by
Lemma 2 below.

We consider a one-parameter analytic family of mappings of the circle
onto itself:

Tz + p+ gle, 2), g(e, z+ 2n) = gle, 2),
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where 4 = 2nm/n and where
g=c¢egt+ g +...
Lemma 2. Assume that the n-th iterate of the mapping shifts points by a
distance of order €, that is,
ngle, 2) = e'ulz) + o(e").

Then the principal term in the shift is invariant under the rotation through
the angle u:

(2) u(z 4 p) = u(2).

Proof. Consider the images x; of a point x, = x under the iterates of the
mapping. By the condition in the lemma,

g(zo) + glzy) + . . . + £(xn) = pr 4 €ulzo) + o (€7),

glx;) + glz) + . . .+ glzy) = pn + eulz) + ofe").

Consequently,

(3) g(xn) — gl(xo) = e'lu(z + p) — ulz)] + o(e").
On the other hand,

z, = x, + 2um + eu(zy) + o(e”),

and, consequently,

(4) 8lzn) — glzo) = g'(zo)e"ulz,) + of€").
Since g’ = O(e), (3) and (4) imply (2).

Proof of the theorem. We consider the following two-parameter family of
perturbations of the rotation through the angle u = 2am/n:

2wz + p+ H(a, & 2), Ha, & z) = a + &f(z),
where € and « are small parameters.
Denote the n-th iterate by
Tz un + n-H(av £, I).
The resonance condition is the solubility of the equation ,H = 0 with

respect to x. The expansion of ,H in a Taylor series in o and ¢ has the
form

nH=nH‘+nH2+ Ceey
where each term ,H’ is a homogeneous polynomial of degree i in o and e

(the value of the i-th variation of the #n-th iterate for g = a+e¢ef). For
example,

nHt=na+te+(fo-+...+fn-q), where fx(z)=Ff(z+ ko).
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By the implicit function theorem, the equation ,H = 0 is soluble for
o = ole, X):
a = evy(z) + evy(x) + - . -

Let r be the index of the first non-constant coefficient v;, so that
ale, x) = A(e)+ev(x)+o(e"), where A is a polynomial of degree less than r,
and v is a non-constant function.

The boundaries of the domain of resonance m/n have asymptotic
expressions o« = A(e)+ e'v.+ o(e"), where v, are the maximum and minimum
of v on the circle. It remains to get a lower estimate of r.

We substitute A(g) in place of « in H and denote the resulting function
by g:

g (e, z) = H(A(e), &, 2).

After n iterations of the mapping z > z -+ p 4 g(e, x) we get a rotation
through a variable angle of order &”. Indeed,

a(e, z) — A(e) = ev(z) + ofe"),
therefore,
2H(a(e, z), e, ) — H(A(e), e, ) = ne"v(z) + ofe")-

But ,, H(a(e, x), e, x) = 0 by the definition of a(e, x). Accordingly,
ngle, ) = H(A(e), e, z) = e"u(z) + o(e"), u = —nu.

By Lemma 2, the function u (hence also v) satisfies the periodicity
condition u(x + u) = u(x).

a1 ovan ~ wraava LALLMy LAVIIIIIIU 1 £V WO WO LILv LWL L woaL,

Lemma 3. The function u can be expressed as a polynomial of degree at
most r in terms of f, shifts of f by angles that are multiples of u, and their
derivatives (of order less than r).

Proof. If we substitute the series without the free term o = A(e) in the
Taylor series of ,, H(«, &, x) with respect to a and g, then the new coefficient
of &" can be expressed linearly in terms of the old coefficients of terms of
degree < r in « and € together. By Lemma 1, the old terms of degree i in «
and & can be expressed as polynomials of degree i in terms of shifts of the
fucntion g = o+ &f by angles that are multiples of a and their derivatives
with respect to x (for constant o and ¢) of bounded order. This proves
Lemma 3, because dg/0x = edf/ox.

Completion of the proof of the theorem. Assume that f is a trigonometric
polynomial of degree p and that rp << n. Then u is a trigonometric
polynomial of degree less than n, by Lemma 3. From Lemma 2 we
concluded above that u has period 2um/n. A trigonometric polynomial of
degree less than n with period 2am/n is a constant. But u is not a constant
(by the choice of r). Hence, ¥ 2 n/p, and Theorem 8 is proved.
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Remark. A diffeomorphism of the circle can have many cycles. Is the
number of isolated cycles of a diffeomorphism given by a trigonometric
polynomial bounded by a constant depending only on the degree of the
polynomial?

This question can be regarded as an analogue of the question in Hilbert’s
16th problem on the number of limit cycles of a polynomial differential
equation. It has not even been solved for the diffeomorphisms
vz + a-+ bcosz.

Conversely, the asymptotic expressions obtained above for the boundaries
of domains of existence of cycles probably have analogues in the theory of
differential equations with a polynomial right-hand side.

Supplement (30 March 1983)

While the manuscript of the present article was being edited, the author
learned of some papers containing other proofs of some of the results: by
C. Bloch [5] (Theorems 1, 2, 4-6), D.M. Levy and J.B. Keller [6]
(Theorem 3), and H. Hochstadt [7] (Theorem 7).

Bloch labels the terms in the perturbation theory series by diagrams
having the form of integer staircases joining the vertices (0, 0) and (n, n)
inside the square without dropping below the diagonal.

The number d, of such diagrams is equal to the corresponding Catalan
number (d, = 2, d; = 5, ...). Bloch’s work thus gives another interpretation
of the Catalan numbers. The most natural definition of them is probably as
the numbers of words of given lengths in a non-associative monoid with a
single generator. It would be interesting to find out whether the non-
associative monoid itself is connected with the perturbation theory (or with
coverings of Riemann surfaces, where the Catalan numbers are also
encountered).

The correspondence between symbols with parentheses and Bloch
diagrams is as follows: a left parenthesis means a step upwards, a right
parenthesis means a step to the right, and a letter means two steps (first
upwards, and then to the right).

Moreover, Manin has communicated to the author that an approach to
perturbation theory close to that presented above was worked out for
different reasons in a manuscript of M. Wodzycki written in July 1982 and
entitled “Variation of the {-function of an elliptic pseudodifferential
operator™,

The author thanks M. Wodzcki, I.M. Gel’fand, A.A. Kiselev, P.A. Kuchment,
V.F. Lazutkin, Yu.l. Manin, and S.P. Novikov for useful discussions.
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