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Abstract. The utility of a Kalman filter (KF) for initialization of an intermediate nonlinear
coupled model for El Nifio — Southern Oscillation prediction is studied via an approximation
of the nonlinear coupled model by a system of seasonally dependent linear models. The
low-dimensional nature of such an approximation allows one to determine a sequence
of “perfect” initial states that start a trajectory segment best fitting the observed data.
Defining these perfect initial conditions as “true” states of the model, we compute a priori
parameters of the KF and test its ability to produce an estimate of the “truth” superior to
the less theoretically sound estimates. We find that in this application such a KF does not
produce an estimate outperforming a pure observational projection as an initial condition
for the coupled model forecast. The violation of standard KF assumptions on temporal
whiteness of observational errors and system noise is identified as the reason for this failure.

1. Introduction

The first coupled ocean-atmosphere numerical model ap-
plied to El Nifio — Southern Oscillation (ENSO) prediction
was the model by Zebiak and Cane [1987] (ZC model). This
model is an anomaly model with regard to climatology spec-
ified from 1970-1985 observations. Predictions of ENSO on
an experimental basis began in 1985 [Cane et al., 1986],
providing forecasts for up to 1 year or more. The ocean
component was initialized by forcing with analyzed surface
wind data (Florida State University (FSU) winds) [Golden-
berg and O’Brien, 1981], while the initial conditions of the
atmospheric component were obtained as a response to the
ocean model fields. Blumenthal [1991] used a reduced set
of variables to build a linear autoregressive (Markov) model
from the output of a free run of the ZC model. The linear
model was used to study the fastest growing disturbances in
the tropical Pacific that limit the model predictability. An-
other important finding was that these disturbances grow dif-
ferently depending on the starting season, with maximum
growth for February starts. On the basis of this work, Xue
et al. [1994] created a linear Markov model from a suite
of 3-year forecast runs of the ZC model from monthly starts
within the interval (1972-1991). When this linear model was
applied to ENSO prediction, it demonstrated equal or bet-
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ter skill than the ZC model, especially for short-term fore-
casts. It showed variation of predictability with starting sea-
son similar to that shown by Blumenthal [1991].

In recent years the forecast skill of the ZC model has
been improved by applying more sophisticated initialization
methods. Chen et al. [1995,1997] assimilated FSU wind
data using a nudging technique. In a later work, Chen et
al. [1998] added to the previous method the assimilation of
subsurface data. These data have been obtained from the as-
similation of tide gauge data into the ocean component of
the ZC model via a reduced-space Kalman filter [Cane et
al., 1996]. The assimilation of analyzed ocean fields made
little difference in the prediction skill for the entire period
starting from 1970. However, the prediction skills for the
period 1992-1997, where the original initialization [Chen et
al., 1995] with FSU winds was producing incorrect fore-
casts, were greatly improved. Chen et al. [2000] applied
an internal statistical correction to the ZC model in order
to reduce its systematic biases. The corrections were calcu-
lated using available data from the period 1972-1985, and
then validated on the period 1986-1999. The ZC model with
this internal correction (LDEO4) has an improved forecast
skill and more realistic internal variability, particularly for
the wind stress anomalies.

Other authors have applied simplified models for ENSO
prediction as well. Graham et al. [1987a,1987b] applied a
canonical correlation analysis for prediction of sea surface
temperature from sea level pressure and winds in the trop-
ical Pacific. Following this research path, other statistical
models [Barnston and Ropelewski, 1992; Latif et al., 1994;
Penland and Magorian, 1993; Penland and Sardeshmukh,
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1995; Jiang et al., 1995; Johnson et al., 2000] have shown
useful prediction skill. Because the statistical models are
constructed from the available data, and the records are not
very long, the model’s construction may be affected by ar-
tificial skill. This is a serious problem that all these studies
have tried to overcome.

Following previous work by Blumenthal [1991] and Xue
et al. [1994,1997a,1997b], we build a linear Markov autore-
gressive model from a multivariate set of data obtained from
a free 100-year run of the latest version of the Lamont cou-
pled ocean-atmosphere prediction model, LDEO4 [Chen et
al., 2000]. Because it is based on a free coupled model run,
the linear model is expected to have no artificial skill when
used for ENSO prediction. We will use this model to explore
data assimilation techniques with the goal of finding a set of
initial conditions that provides the best ENSO predictions.

The low-dimensional nature of our model allows us to de-
termine via an inverse calculation a set of initial conditions
which gives the best possible prediction for 6 months. We
then treat this set as if it represented the true state of the sys-
tem and compute directly all statistical parameters required
by the Kalman filter. We then attempt to use this perfectly
tuned procedure for estimation of the initial states for the
model forecasts. We discover that the results do not outper-
form a direct initialization from the observations. We iden-
tify the violation of standard assumptions of Kalman filter
as the reason for that and infer the necessity to use the state-
dependent error models. We expect this problem to be quite
general in applications of standard data assimilation schemes
for initialization of imperfect models.

The paper is organized as follows. Section 2 describes the
approach used for the linear model construction. A num-
ber of sensitivity tests are presented in section 3, where the
main features and parameters of the linear model that lead to
the best forecast skills are determined. Section 4 studies the
forecast performance of the linear model for an initialization
derived from observations and contrasts it with the perfor-
mance of the “best” initial conditions that are found with the
knowledge of the target forecast. Section 5 evaluates how
close one can get to these best initial conditions using se-
quential assimilation techniques like the Kalman filter. Final
discussion and conclusions are presented in section 6.

2. Linear Markov Model

Chen et al. [2000] have shown that adding an internal sta-
tistical bias correction to the Zebiak-Cane coupled ocean-
atmosphere model can help hold it in states closer to obser-
vations. A detailed description of the Zebiak-Cane model
and its variables has been given by Zebiak and Cane [1987].
The coupled model £ can be defined via a state vector repre-
sentation 7 with a transition from the month ¢ to the month
t+1:

THL = £(T). )
The coupled model state space is similar to that used by Xue

et al. [1997a], which contains variables from both the ocean
and atmospheric components of the model. In our case the
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state vector contains 13 different variables and has a dimen-
sion of N & 2.4 x 10%:

X = 2)
(aky h’ u, hbndy7 Ubndya SSta'O; SSta'm; Tz Ty, Ua7 Va, d) q) .

The oceanic variables are represented by the amplitude of
the equatorial Kelvin wave ay, the Rossby component of the
upper layer depth h, the Rossby mode zonal velocity u, and
the boundary components hpnay and upngy of the last two
variables. The meridional component is not included in the
state space because it is a diagnostic variable in this model
[see Cane and Patton, 1984]. The sea surface temperature
anomalies (SSTA) are represented by two variables: ssta, is
the dynamical model SSTA, and ssta,,, is the bias-corrected

SSTA that is used internally in LDEO4 to force the atmo-
spheric model. The atmospheric component is represented
by the two components of the surface wind anomaly U, and
Va, the wind convergence anomaly d, and the atmospheric
heating anomaly ¢g. Although the two components of the
wind stress anomaly 7, and 7, are diagnostic variables, they
are included in the state vector in order to make the connec-
tion of the model state with the observed wind stresses more
straightforward.

The calculation of the linear seasonal Markov model fol-
lows Blumenthal [1991] and Xue et al. [1994]. Both studies
use a monthly independent basis (MIB), that is, a single mul-
tivariate empirical orthogonal function (MEOF) basis calcu-
lated from the set of data encompassing all seasons. Output
fields from the 100-year run have been stored in the matrix A
which has dimensions IV X ¢, IV being the dimension of the
state vector and ¢t=1200 the number of monthly time steps
in the data. Each variable has been normalized with respect
to its total variance before the MEOF decomposition was
performed. In the spirit of the work by Xue et al. [1997a],
the normalized atmospheric model variables (U, V,, d, and
q) and the ocean boundary variables (hpngy and upndy) are
down-weighted by a factor of 10, while the rest of the model
variables are left unchanged. The basis is calculated from
the matrix A:

A=EXT. (3)
Columns of E are the MEOFs of the data, columns of X
are principal components (PCs), and superscript T' denotes
matrix transposition. Columns of F are orthogonal, and
columns of X are orthonormal in this notation. For further
development we truncate expansion (3) to the first n terms.
Blumenthal [1991] calculated seasonal transitions and found
that the seasonal model fits the ZC model better than a non-
seasonal one. As in the work by Xue et al. [1994], we
separate the PCs into monthly blocks, in order to calculate
monthly transition matrices L? for each of the 12 calendar
months:
Tip1 = L'z; + &;. 4)

Here z; is a subset of rows in X which correspond to the
month 4, and &; is the error in the model fit. Xue et al. [1994]
calculated the linear Markov model from
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L' = (zipra] Yzizl) 7t (5)

where angle brackets denote time averaging.

Blumenthal [1991] used a small diagonal taper in the cal-
culation of the linear Markov model to avoid the influence of
numerical singularity in the autocovariance matrix (the de-
nominator of equation (5)). He interpreted the taper A as
the covariance matrix of the uncertainty in the EOFs. When
tapering is applied, equation (5) becomes

L' = (zip2] Yzl +A)7 6)

Blumenthal [1991] showed that the taper reduces the
growth of the error in the initial conditions by filtering low-
energy modes. The use of the taper results in a more di-
agonally dominant transition matrix but increases the rate
of decay in the linear model. Xue et al. [1994] constructed
the linear model without the use of the taper. They found
that when the linear model is initialized with the projections
of the observed SSTAs on the MEOFs, the use of projec-
tions on the modes with numbers higher than 1 results in
degraded predictions. (The first MEOF is a characteristic
ENSO pattern which can be initialized from the observed
data in an unambiguous way; the patterns with higher num-
bers receive erratic initialization because of a large portion
of observed SSTA variability which is not being represented
by the model.) We obtained a similar result when no taper
was applied in the calculation of the transition matrices. In
that case the low-energy modes show very fast error growth.

3. Sensitivity Tests and Parameters for the
Markov Model

We first define the projection of observational data onto
the reduced space spanned by the basis E. These low-
dimensional representations of the observed system states
will be used as the baseline initial conditions and as the
verification data set for the forecast experiments with dif-
ferent versions of the Markov model. In order to choose a
model with the best forecast skill, we subject different model
versions to the following tests: Using observational projec-
tions as initial conditions, we compare predictions of NINO3
(SSTA area average for (5°S-5°N, 90°-150°W)) of up to a
year ahead with the observed values. Comparison results
are presented in terms of correlation coefficients and RMS
differences separately for initial conditions from 1972-1985,
which was the LDEO4 training period, and from 1986-1999,
the LDEO4 validation period [Chen et al., 2000].

We introduce a vector 7° which contains the following
data: (1) zonal and meridional components of the wind
stress from Florida State University (FSU) [Goldenberg and
O’Brien, 1981]; (2) SSTA from the Climate Prediction Cen-
ter of the National Centers for Environmental Prediction
(NCEP); and (3) analyzed ocean model fields obtained from
the assimilation of tide gauges into the Cane-Patton model
[Cane and Patton, 1984] using a reduced space Kalman fil-
ter [Cane et al., 1996]. These fields are interpolated to the
same grid as their model counterparts. The vector of ob-
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servations can be connected to the full state vector using a
sampling matrix H (a submatrix of the identity matrix which
includes only rows corresponding to the variables which are
observed):

T° = HT. )

The estimate of the projection of 7° onto the reduced
space will follow the projection method described by Ka-
plan et al. [1997], with an observational error covariance
matrix equal to the identity as in the work by Smith et al.
[1996]. The projection then can be written as

Tobs = (ETHTHE) 'ETHTT®. (8)

We have analyzed the utility of defining the basis E as
monthly dependent or independent. For the monthly-depen-
dent case (monthly-dependent basis, MDB) a different basis
is calculated for every calendar month. In this case the auto-
covariance in (6) is diagonal, and so is its inverse. The tran-
sition matrix is more diagonally dominant, but if the range
between its largest and smallest eigenvalues is too large it
has the same problems as the MIB when a taper is not used.
Since the MDB-based models did not show better skill than
those with the MIB, for convenience and simplicity we chose
the MIB-based models for further use.

We experiment with different values of the diagonal ele-
ments of the tapering matrix A in (6). Sensitivity tests were
carried out, and the best forecasting performance was ob-
tained for values below 1% of the maximum eigenvalue of
the autocovariance matrix. This value was smaller than the
leading 11 eigenvalues for all seasonal autocovariances.

For statistical models constructed from observations, the
forecast skills increase with the number of leading MEOFs
included in the model state, if the model is initialized us-
ing the same data that were used for its construction. Be-
cause we construct our statistical model from a free coupled
model run and evaluate its forecasting skill from observa-
tions, this behavior is not expected. Moreover, the taper acts
like a truncation of the singular values of the transition ma-
trices, suppressing growth of the modes that do not show a
strong presence in the model run. Figure 1 shows the predic-
tion skill for linear Markov models of different dimensions,
when the projection of the observations (8) is used for the
initialization. The model dimension at which the forecast
skill becomes invariant depends on the value of the taper. If
A = 0, the forecast skill gets worse without showing any
convergence as the dimension increases. For the value of the
taper we use, the forecast skill is improved up to the model
dimension of 5 and 6; then it worsens slightly and becomes
almost unchanging for dimensions higher than 10 or 12.

On the basis of this analysis we choose for further use
the linear Markov model of dimension 6 with an MIB and
a taper below 1% of the largest eigenvalue of the sample
covariance. We refer to this model as the LDEO4-MK®6.

Table 1 shows how much of the variance for each inde-
pendent variable is accounted for by six MEOFs. The per-
centage of the variance that is accounted for is less than 80%
only for the variables associated with the Rossby mode zonal
velocity.
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Figure 1. Correlations and RMS error for forecasted NINO3 index for the 1972-1985 and 1986-1999
periods. Different symbols represent forecast skill for linear Markov models of different dimensions.

4. Applications of the Linear Markov Model
4.1. Forecast Performance

To study the forecast performance of the LDEO4-MK6
model we use two different sets of initial conditions: (1) the
LDEO4 standard initial conditions as in the work by Chen et
al. [2000], which uses the full insertion of FSU wind stresses
into the model together with the nudging of the ocean fields
analyzed by the method of Cane et al. [1996]; and (2) pro-
jection of observations s defined by (8). Figure 2 com-
pares the performance of the full LDEO4 model with that
of the LDEO4-MK6 initialized with the projection of the
standard LDEOA4 initial conditions and with the projection
of observations. As could be expected, the full model cor-
relations are higher than those for the linear model for the
full model training period (1972-1985), though the RMS er-
ror is smaller only after 6 months. For the validation period
(1986-1999) the linear model forecasts are better than those
of the full model. For both periods the differences are not
very large. Note that the full LDEO4 model predicts the am-
plitude of the 1997-1998 event better than the LDEO4-MK6
model, although it overestimates small events (Figure 3).

To assess the linear model’s decay, we carried out the fol-
lowing test. For the period 1972-1999, we compute the mean
and standard deviation of the six MEOF amplitudes repre-
senting the projection of the observations and compare them
with the same parameters for each forecast lead time (our
analysis sample has a nonzero mean as it comes from a pe-
riod different from the climatological one). To provide a
standard of comparison, we analyzed the time evolution by
the LDEO4-MKG6 of an ensemble of a normally distributed

random field with the same initial mean and standard devi-
ation as our sample of observational projections. The first
MEOF amplitude decays substantially, losing about half of
its standard deviation in 12 months, while the other five am-
plitudes experience only small decay. Only the first two
mean amplitudes show a significant change, and it is small
compared to the values of their respective standard devia-
tions. The decay of the first mode affects significantly the
prediction of the NINO3 index, because it represents a dom-
inant contribution to this index. On the basis of the decay

Table 1. Total Normalized Variance of Each Model Variable
and its Percentage Accounted for by six Multivariate Empir-
ical Orthogonal Functions

Variable Total Normalized Variance % of Variance
ag 1.00 97
h 1.00 87
u 1.00 76
Rbndy 1.00 87
Ubndy 1.00 73
ssta, 1.00 93
sstam 1.00 93
Tz 1.00 81
Ty 1.00 84
U, 0.01 88
Va 0.01 94
d 0.01 94
q 0.01 92
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Figure 2. Same as Figure 1, but for two LDEO4-MK6 forecasts (initialized by observations (INI-obs)
and initialized by the LDEO4 initial conditions(INI-ldeo4ini)) and the standard LDEO4 forecast (full

LDEO4).

found in this experiment, it is possible to correct the first
element of the state vector by multiplying it by a constant
factor after each propagation (the corrected model is not
the best fit to the free coupled model run as the LDEO4-
MKG6 is). The use of this correction improves the predic-
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tion of large events (especially 1997-1998) without generat-
ing any unreal events. The amplitudes of the corrected lin-
ear mode] predictions are still smaller than those from the
full LDEO4 model, but the unreal large events predicted by
the full LDEO4 model in 1977-1978 and 1991-1992 are not
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Figure 3. Time series of observed (thin lines) and predicted (thick lines) NINO3 for lead times of 6 (left)
and 9 (right) months. Shown are predictions for the full LDEO4 and for the LDEO4-MKG6 initialized with
the standard LDEO4 initial conditions (INI LDEO4) or with observations (INI obs).



30,952

CANIZARES ET AL.: DATA ASSIMILATION VIA LINEAR LOW-ORDER MODELS

9-MONTH FORECAST

NINO3 SSTA, °C

T

| —— Obs
mene |NI-0bS
s |NI-0ObS+COT

= ; ;
1975 - 1980

1985
YEAR

Figure 4. Time series of observed and predicted NINO3 for a 9-month lead. Shown are predictions for
the LDEO4-MK6 model initialized with the projection of observations (INI-obs) and the same with an
internal correction for the decay of the first component (INI-obs+cor).

present in either of the linear model predictions (Figure 4).
Overall, neither the correlation coefficient nor the RMS error
changes significantly with the correction, and we proceed to
use the uncorrected version of the LDEO4-MKG6 for the rest
of our study.

4.2. Inverse Solution for the ‘“Best” Initial Conditions

As Figures 2-4 demonstrate, a linear Markov model ini-
tialized with either standard LDEO4 or observed initial con-
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ditions can produce a reasonably good forecast up to lead
times of 6 months (correlation coefficient 0.8, and 0.7°C
RMS). After 6 months the prediction skill degrades quickly
(correlation coefficient of 0.6 and a RMS error of about 0.85
after 9 months). Is it possible to find a set of initial con-
ditions which yields a good forecast for longer lead times?
To answer this question, we define a set of initial conditions
of the model trajectory best fitted to the observations for a
given length of time in a least squares sense.
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Figure 5. Same as Figure 1, but for the LDEO4-MK6 model initialized with the inverse solution for a
6-month optimization interval (INV 6m) and the standard LDEO4 model forecast (full LDEO4).
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Figure 6. Time series of all six components of the inverse solution (Xin6) and the projection of observa-
tions (Xobs). Squared correlation coefficients are shown in the lower left corner of the panels.

The set of initial conditions we are trying to estimate will
be obtained by minimizing the functional

m

= Z(ngs - L*Yix)T( Tops — L™ ! z)

=0

J[z] ©

with respect to z, where L** is the transition matrix from
month 1 to month ¢ 4 1 calculated recursively:

L =r; L =L'L>1 i=1,2,.... (10
Here m is the number of months in the segment for which
the trajectory is fitted to the observations. The initial con-
ditions z;, obtained as a minimizer of 7 (we will call them
the “inverse solution”) show better prediction skills than any
of the other two sets presented above, and in the sense of
the cost function (9) its skill is as good as it gets. At lead
times up to m the correlation of the forecasts with the ob-
servations is very close to that of the initial conditions. The
RMS error is slightly larger at month m than at month O due
to the decay of the linear model and other model imperfec-
tions (Figure 5). Note that this method is not a forecasting
procedure since in order to issue a forecast starting at month
t observations up to month ¢ 4+ m are needed. However, it
gives us an ideal initial state to reach for.

Time series of six initial conditions from the 6-month tra-
Jjectory best fit (m = 6) and from the observations are shown
in Figure 6. The differences among the components of z;,

and x,ps are small, and the correlation between these two
states is very high except for the third and fourth compo-
nents. The study of the 6-month propagator L*% shows

that the 6-month prediction of the first component (the one
that mainly represents the NINO3 index) is influenced very
strongly by the third or fourth component in the initial con-
ditions depending on whether the starting month is in the

summer-fall or in the winter-spring. The first and second
components contribute significantly for all starting months.

5. Can the Optimal Solution Be Obtained
From the Sequential Assimilation?

The inverse solution for the initial conditions that we cal-
culated in the previous section makes use of the observations
up to lead time m, and therefore cannot be considered a fore-
cast for time m. Our goal here is to use a sequential assim-
ilation technique in an attempt to find an initial state for the
actual forecast which would be close to the inverse one. That
is, the initial conditions will be estimated from observations
up to and including the initialization time, but not from the
future observations. We will use the inverse solution z, for
starting month ¢ as if it were a true state of the system within
the period of available data.

The observed vector x4 is related to the true state by the
measurement equation:

Tobs = Tty + Eqps; an
where !, is the projection of the observations to the re-
duced space determined by (8), ef _ represents the observa-
tional error, or the difference between the “true” (6-month
inverse solution z;,) and observed states, and ¢ here is the
time index. We write the propagation equation as
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Figure 7. Evolution of the theoretical o2, (dark) and actual o2, (light) Kalman filter error variance for
the amplitudes of the (left) first and (right) second modes. The nonweighted cases are shown with solid
lines, and the weighted cases are shown with dashed lines. Top plots are for initialization with z;y, and

bottom plots are for Zobs.

t L t—1 t
Lin = Llwin + €mod> (]2)

where superscript ¢ indicates the season corresponding to the
time t — 1 and €04 is the model error in a single-month
transition, often called “the system noise”. Note that in this
equation we use the same LDEO4-MK6 model operator Li
as before, even though the inverse “true” states are in fact
governed by more complicated (not AR(1)) dynamics.

Since for the time interval 1972-1999 we know %, and
:L’fn, we can use equations (11) and (12) to compute actual
realizations of error sequences ¢!,  and e ;. We then
use these sequences to compute error covariances (averag-
ing here is done separately for each calendar month, due to
the model seasonality):

Ql = <Einod€§n,1;d>7
. . T
R’ <Ef)bs 5:)bs >’

(13)

i=1,2,...,12.

At this stage we have all the necessary elements for build-
ing a sequential assimilation scheme based on the Kalman
filter in order to estimate the true state of the system. At ev-
ery time step, the system error covariance and the Kalman
gain matrix can be calculated using:

Pt = L'P'LT+ QY (14)
K' = P}(Pi+R)T, (15)
P! = (I-K")P}, (16)

where subscripts f and a denote Kalman filter forecast and
analysis respectively, and K is the Kalman gain matrix (see
Cane et al. [1996] and Kaplan et al. [1997] for the formal-

ism; in the present case the observational map H = I). In-
dex 1 here denotes the season corresponding to the month
t — 1. The Kalman filter corrections can be written as

(I

We perform 12-month-long Kalman filter assimilation runs
starting from every month in 1972-1999, and we experiment
with two initialization schemes for the assimilation runs: (1)
we start from the “truth” z;, and assume initial error P = 0,
or (2) we start from the observational projection z4,s and
assume the initial error P = R. Since the values of z;, are
known at all months, we can compare the actual error vari-
ance in a Kalman filter analysis with its theoretical estimate
(diag[P,]). Figure 7 presents the 12-month evolution of
these values for the amplitudes of the first two components
(the comparison is presented as a function of time elapsed
since the beginning of a Kalman filter run, in averages over
the entire sample of runs). The actual error o2 grows much
faster and toward a larger value than the estimated error afhe;
that is, the filter significantly underestimated the system er-
ror. In the case when the filter is initialized with the observed
data, the theoretical error decreases with time, while the ac-
tual error increases. However, the end-of-period values for
actual and theoretical error do not depend on the initializa-
tion. The same behavior is observed for amplitudes of other
components.

This discrepancy between theoretical and actual error
growth can be partially traced to the nonwhiteness of €04
in time. Figure 8 shows error evolution with no data assimi-
lation (a forecast). The actual error o2, grows much faster

ol = af + K' (2, — zf).
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Figure 8. Evolution of the theoretical o, , (dark) and actual o2 ; (light) error variance of model forecasts
with no data assimilated. Shown are the amplitudes of the (left) first and (right) second modes. The
nonweighted cases are shown with solid lines, and the weighted cases are shown with dashed lines. Top
plots are for initialization with z;,, and lower plots are for zqps.

than the theoretically estimated one o2, ., for both initializa-
tion cases. Equation (14) correctly describes the error evo-
lution with @) defined by (14) only if en0q is uncorrelated
for different times. In fact, this is not the case, as is demon-
strated by Figure 9, in which the temporal autocorrelations
of e andel, (i = 1,2,3) are shown. Note the precise
match between the actual and theoretical error for 1-month
lag in the top two panels of Figure 8: It is guaranteed by (14).
In order to obtain a better fit to the error in the nonassimila-

tion run, we attempt to increase the system noise matrix ).

We multiply @) from both sides by the diagonal weighting
matrix w = diag[4,4,2.5,2,1.5,2]'/2 chosen to force the
theoretical values to approximate the actual ones.

This increase in Q results in a better, though still far from
perfect agreement between the theoretical and actual errors
(Figure 8). Use of increased Q in assimilation results in a
reduction of the actual error and an increase in its theoreti-
cal estimate, although the gap between the two is still quite
large (Figure 7). Figure 10 shows the variation in time of the
actual and estimated error variances of the amplitude of the
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Figure 9. Temporal autocorrelation of the first three components of the (top) observational €ops and

(bottom) model £,,04 €rrors.
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Figure 10. Time series of the theoretical 63, (dark) and actual o2, (light) error variance for the amplitude
of the first mode, after (top) 1 and (bottom) 6 months of assimilation. Left plots correspond to the case
initialized with z;,, and right plots correspond t0 Zops-

first component after 1 and 6 months of assimilation for the
two initialization cases with increased matrix Q). While the
theoretically estimated error exhibits a stable annual cycle,
the actual error has periods of very large and very small val-
ues. Although errors at 1 month are very different for the two
initializations, they are quite similar after 6 months, indicat-
ing that in both cases the Kalman filter provides almost the
same solution at 6 months (it “forgets”an initial condition).

Figure 11 compares the forecast skill of a model initialized
by the end state of a 6-month KF run, z+5, with those which
utilize the information less completely: the projection of ob-
servations at time ¢t + 6, zf)",;f (corresponding to a Kalman
gain K = I), and the 6-month model forecast from zt, (cor-
responding to a Kalman gain K = 0 if the filter is initialized
by zt,). The prediction from the Kalman filter state lies in
between the other two. Its skill is marginally worse than the
initialization from observations. It clearly does not improve
on observations alone.

Figure 12 shows for December 1997 (the peak of the El
Nifio of 1997-1998) the SSTA and wind stress anomalies
from observations, the part of the observations that is pro-
jected onto the the reduced space, and the 9-month forecast
initialized by observations. The linear model initialized by
observations can predict the peak of the event reasonably
well at least 9 months in advance, although the amplitude of
the event is significantly underestimated (cf. Figure 3).

6. Discussion and Conclusions

A linear Markov model has been constructed from the out-
put of a 100-year run of the Zebiak-Cane coupled ocean-

atmosphere model with an internal bias correction (LDEO4)

[Chen et al., 2000]. The model variability can be success-
fully represented by a small number of MEOFs. It has been
found that the reduced state of dimension 6 and the linear
model created on the associated amplitudes present the best
prediction skills when initialized with observations (or the
standard LDEO#4 initial conditions).

The reduced space approach allows us to find an initial
state which best fits a model trajectory segment to the obser-
vations. By construction, such “inverse” solutions show ex-
cellent prediction skills. Of course, since one needs to know
the observations from the future to calculate the inverse solu-
tion, this method cannot be used for true predictions. It does
provide us with a set of “perfect” (in the sense of predictions
with this model) initial conditions useful for predictability
and initialization studies.

A sequential data assimilation method (Kalman filter) has
been constructed in an attempt to calculate a model state
which approximates the inverse solution using only past
data. Although all the errors are known a priori (for the
1972-1999 period) the solution provided by the Kalman fil-
ter is notably inferior to the optimal one. In fact, it does not
even outperform the one initialized purely from the latest
observational data, that is, the one which uses no dynamical
information from the model.

We identified the nonwhiteness of the model error as a
problem. This problem can be only partially corrected by
the simple inflating of the system noise covariance @) which
we use in this work.

Here we attempt to find out if we are at all able to set up a
sequential data assimilation system which linearly combines
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Figure 11. Same as Figure 1, but for the LDEO4-MK6 model forecast initialized with three different
sets of initial conditions: projection of observations (Xobs), 6-month forecast from the inverse solution

(Xfor(t+6)), and the Kalman filter analysis (Xkf).

model forecasts with observations for results superior to both
sources. Since we want !, to be the same as ¢, we obtain

from (17) that an “ideal” Kalman gain should satisfy

t t( .t t

_'5f=K (sobs_sf)a (18)
where e’} = x? —z!, is the forecast error. Because the actual
time series of the errors are available, we can determine K
(assuming it time-independent) by a linear best fit procedure:

Ky = (e7(e] — e0ne) TI(e% — ebps) (65 — b)) ™! (19)

(angle brackets again denote averaging over time t). If fore-
cast and observational errors are uncorrelated ((e ¢, €obs) =
0), then expression (19) becomes a familiar formula for
Kalman gain:

Kihe = (20
(‘Efé‘}’)((gfs?) + (50bs€st>)—1 =P(P + R)_l‘

Note that the theoretical Kalman gain has all its singular val-
ues between O and 1.

We analyze Kalman filter corrections for two types of 1-
month predictions: from the inverse solution (“truth”) and
from observations. Figure 13 shows all six singular values
of matrices Ky and Kpgy obtained from these two initial-
izations. While singular values of K¢ do not exceed 1 by
much for the forecast from the inverse solution, the singu-
lar values of Ky, are considerably larger than 1 when the
forecast is done from observations. Since Kz, has singular
values larger than 1 it cannot be produced theoretically with

any settings of the Kalman filter for our model of the dy-
namical system: The closest possible approximation would
be K = I, which corresponds to replacing the forecast with
observations at every time step. We tried to use the best fit
Kalman gain to correct the initial conditions for predictions.
The forecast skill obtained is not a significant improvement
over that from the observations (not shown).

The reason for the large difference between Kg, and Kipe
is a correlation between &4, and ¢ 5. It is caused by the
correlation between g,hs and emod (sample correlations are
positive for all components: 0.68, 0.72, 0.66, 0.68, 0.38, and
0.56). This correlation (as well as a serial correlation in these
errors, see Figure 9) occurs because the system is getting in
and out of regimes, and the autoregressive model can not
capture this behavior correctly (cf. Figure 10). While the
residuals of the original fit of the LDEO4-MKG6 to the free
100-year run of the coupled model show some autocorrela-
tion, they do not reach the values and temporal extent of the
correlations in Figure 9. However, when our definition of
“truth” uses the 6-month predictive performance of this im-
perfect model as a term of reference, the imperfections of
the model get translated into a common contribution toward
errors of both types (g,hs and emoq) and cause their cross-
correlation and autocorrelation.

The same problem affects the x? test for innovations in
our Kalman filter runs. Figure 14 presents the statistics

J(8) = ((wops — 27)T (P} + R) "M abps — 2%))  (21)

as a function of time since the beginning of the Kalman fil-
ter run, averaged over the entire set of 12-month-long assim-
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Figure 12. Sea surface temperature and wind stress anomaly fields in December 1997 from observations,
the part of the observations that is projected onto the 6-dimensional LDEO4-MK6 model space, and the
9-month LDEO4-MKG6 forecast initialized with the projection of observations.

ilation runs. Under standard Kalman filter assumptions, J
is an average of individual x? variables with six degrees of
freedom each, so its expected value is equal to 6. Sample
elements that are averaged in the right-hand side of equa-
tion (21) display the 1-month lagged autocorrelation of 0.7.
An effective sample size used for computing quantiles of the
theoretical distribution for J was reduced accordingly. The
values of J closest to its expected mean are produced by
the runs where () was not scaled up, particularly for their
months 7-12. However, even these values fall between the
lower 10% and 1% quantiles of the theoretical distribution.
Empirical values of J are significantly smaller than their the-
oretical expectation, because the correlation between obser-

-
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Figure 13. Singular values of the theoretical Kalman gain
Kihe (dashed), and the best fit Kalman gain Kgq (solid). Su-
perscripts “in” and “0” denote the cases initialized with x;,
and s, respectively.
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Figure 14. Averaged x? statistics for the Kalman filter inno-
vation sequences, as a function of time since the beginning
of the Kalman filter run. Shown are averages for the entire
sample of runs for the cases of the nonweighted (thick lines)
and weighted (thin lines) system noise covariance matrix Q.
Initializations with z;, and Z,ps are shown as dashed and
solid lines, respectively. The top boundary of the plot is the
expected theoretical mean for J (6.00). Dotted horizontal
lines show lower 10%, 5%, and 1% quantiles of the theoret-
ical distribution (5.41, 5.26, and 4.96, respectively).
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vational and model error makes innovations zons — 5 t00
small compared to their theoretical covariance Py + R. This
discrepancy increases when @) is scaled up in order to com-
pensate for the serial correlation in the model error, because
increase in () results in larger covariances Py and smaller
innovations.

Our attempts to account for serial correlations in errors
via state space extension [e.g., Gelb, 1974; Cariizares, 1999]
have not resulted in appreciable improvements for the pre-
diction [Cariizares et al., 2000]. Space extension amounts to
the use of higher-order autoregressive models for the errors,
while in the current application the errors seem to require
state-dependent modeling.

We demonstrated that the actual model and observational
errors deviate from textbook error assumptions in the Kalman
filter (white noise process, uncorrelated errors, etc.) to such
an extent that the Kalman filter does not outperform pure ob-
servational projection. When the Kalman filter assumption
of white noise processes for the system noise and the obser-
vational error are violated, errors must be defined with more
faithful models in order to enable sequential data assimila-
tion algorithms to find initial states for better prediction.
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